Suppr超能文献

对全局图像对比度的感知涉及透明空间滤波以及局部对比度(而非均方根对比度)的整合与抑制。

Perception of global image contrast involves transparent spatial filtering and the integration and suppression of local contrasts (not RMS contrast).

作者信息

Meese Tim S, Baker Daniel H, Summers Robert J

机构信息

School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.

Department of Psychology, University of York, York YO10 5DD, UK.

出版信息

R Soc Open Sci. 2017 Sep 6;4(9):170285. doi: 10.1098/rsos.170285. eCollection 2017 Sep.

Abstract

When adjusting the contrast setting on a television set, we experience a perceptual change in the global image contrast. But how is that statistic computed? We addressed this using a contrast-matching task for checkerboard configurations of micro-patterns in which the contrasts and spatial spreads of two interdigitated components were controlled independently. When the patterns differed greatly in contrast, the higher contrast determined the perceived global contrast. Crucially, however, low contrast additions of one pattern to intermediate contrasts of the other caused a paradoxical in the perceived global contrast. None of the following metrics/models predicted this: max, linear sum, average, energy, root mean squared (RMS), Legge and Foley. However, a nonlinear gain control model, derived from contrast detection and discrimination experiments, incorporating wide-field summation and suppression, did predict the results with no free parameters, but only when spatial filtering was removed. We conclude that our model describes fundamental processes in human contrast vision (the pattern of results was the same for expert and naive observers), but that above threshold-when contrast pedestals are clearly visible-vision's spatial filtering characteristics become transparent, tending towards those of a delta function prior to spatial summation. The global contrast statistic from our model is as easily derived as the RMS contrast of an image, and since it more closely relates to human perception, we suggest it be used as an image contrast metric in practical applications.

摘要

在调整电视机的对比度设置时,我们会体验到全局图像对比度的感知变化。但该统计量是如何计算的呢?我们通过对微图案棋盘配置进行对比度匹配任务来解决这个问题,其中两个相互交错的组件的对比度和空间分布是独立控制的。当图案的对比度差异很大时,较高的对比度决定了感知到的全局对比度。然而,关键的是,将一种图案的低对比度添加到另一种图案的中等对比度中,会导致感知到的全局对比度出现矛盾。以下指标/模型均未预测到这一点:最大值、线性和、平均值、能量、均方根(RMS)、莱格(Legge)和福利(Foley)模型。然而,一个从对比度检测和辨别实验推导出来的非线性增益控制模型,结合了宽视野求和与抑制,在没有自由参数的情况下确实预测了结果,但前提是去除空间滤波。我们得出结论,我们的模型描述了人类对比度视觉中的基本过程(专家和新手观察者的结果模式相同),但在阈值以上——当对比度基座清晰可见时——视觉的空间滤波特性变得透明,在空间求和之前趋向于狄拉克函数的特性。我们模型中的全局对比度统计量与图像的RMS对比度一样容易推导,并且由于它与人类感知更密切相关,我们建议在实际应用中将其用作图像对比度指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd4c/5627075/7edd900aa978/rsos170285-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验