Suppr超能文献

中位数线性函数的统计推断:置信区间、假设检验及样本量要求。

Statistical inference for a linear function of medians: confidence intervals, hypothesis testing, and sample size requirements.

作者信息

Bonett Douglas G, Price Robert M

机构信息

Department of Statistics, Iowa State University, Ames 50011-1210, USA.

出版信息

Psychol Methods. 2002 Sep;7(3):370-83. doi: 10.1037/1082-989x.7.3.370.

Abstract

When the distribution of the response variable is skewed, the population median may be a more meaningful measure of centrality than the population mean, and when the population distribution of the response variable has heavy tails, the sample median may be a more efficient estimator of centrality than the sample mean. The authors propose a confidence interval for a general linear function of population medians. Linear functions have many important special cases including pairwise comparisons, main effects, interaction effects, simple main effects, curvature, and slope. The confidence interval can be used to test 2-sided directional hypotheses and finite interval hypotheses. Sample size formulas are given for both interval estimation and hypothesis testing problems.

摘要

当响应变量的分布呈偏态时,总体中位数可能是比总体均值更有意义的集中性度量指标;而当响应变量的总体分布具有厚尾时,样本中位数可能是比样本均值更有效的集中性估计量。作者提出了一种针对总体中位数的一般线性函数的置信区间。线性函数有许多重要的特殊情况,包括成对比较、主效应、交互效应、简单主效应、曲率和斜率。该置信区间可用于检验双侧方向性假设和有限区间假设。给出了区间估计和假设检验问题的样本量公式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验