Suppr超能文献

尼可地尔长期给药可消除人类心肌的缺血预处理和药理预处理:线粒体三磷酸腺苷依赖性钾通道的作用

Long-term administration of nicorandil abolishes ischemic and pharmacologic preconditioning of the human myocardium: role of mitochondrial adenosine triphosphate-dependent potassium channels.

作者信息

Loubani Mahmoud, Galiñanes Manuel

机构信息

Department of Integrative Human Cardiovascular Physiology and Functional Genomics, Division of Cardiac Surgery, University of Leicester, Glenfield Hospital, Leicester, United Kingdom.

出版信息

J Thorac Cardiovasc Surg. 2002 Oct;124(4):750-7. doi: 10.1067/mtc.2002.126037.

Abstract

BACKGROUND

Acute administration of mitochondrial adenosine triphosphate-dependent potassium channel openers preconditions the heart, but whether their long-term administration induces a permanent state of protection is unknown. These studies investigate the effect of long-term treatment with the mitochondrial adenosine triphosphate-dependent potassium channel opener nicorandil on the response of the human myocardium to ischemia and preconditioning.

METHODS

Right atrial tissue obtained from patients regularly treated with or without nicorandil (mean of 20 mg/d for 18.6 +/- 2.5 months) and undergoing cardiac surgery was sliced and equilibrated for 30 minutes and then subjected to 90 minutes of simulated ischemia, followed by 120 minutes of reoxygenation. In study 1 the following groups were studied to investigate the effect of nicorandil on the susceptibility of the myocardium to ischemia and on the protective effect of ischemic and pharmacologic preconditioning: (1) aerobic control; (2) simulated ischemia and reoxygenation alone; (3) ischemic preconditioning with 5 minutes of simulated ischemia and 5 minutes of reoxygenation; and (4) phenylephrine (0.1 micromol/L) for 5 minutes and 5 minutes' washout before simulated ischemia and reoxygenation. In study 2 the following groups were studied to investigate the effect of nicorandil on the responsiveness of mitochondrial adenosine triphosphate-dependent potassium channels: (1) aerobic control; (2) simulated ischemia and reoxygenation; (3) ischemic preconditioning; (4) diazoxide (100 micromol/L) for 10 minutes before simulated ischemia and reoxygenation, and (5) 5-hydroxydecanoate (1 mmol/L) for 10 minutes before simulated ischemia and reoxygenation. In study 3 the following groups were included to investigate the effect of the long-term administration of nicorandil on the kinase pathway involved in preconditioning: (1) aerobic control; (2) simulated ischemia and reoxygenation alone; (3) ischemic preconditioning; (4) phorbol 12-myristate 13-acetate (1 micromol/L), a protein kinase C activator, for 10 minutes before simulated ischemia and reoxygenation; and (5) anisomycin (1 nmol/L), a p38 mitogen-activated protein kinase activator, for 10 minutes before simulated ischemia and reoxygenation. At the end of each protocol, the leakage of creatine kinase (in units per gram wet weight) and the reduction of 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide into insoluble formazan dye (in millimoles per gram wet weight) were measured.

RESULTS

In study 1 the leakage of creatine kinase and the reduction of 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide induced by simulated ischemia and reoxygenation were similar in the groups with or without nicorandil (creatine kinase, 3.4 +/- 0.1 and 3.5 +/- 0.2, respectively; 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 74.6 +/- 3.9 and 67.9 +/- 7.3, respectively; P >.2 in each instance). Ischemic preconditioning and pharmacologic preconditioning protected the myocardium from patients without nicorandil (creatine kinase, 2.3 +/- 0.1 and 2.4 +/- 0.1, respectively; 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 131.4 +/- 4.9 and 128.4 +/- 5.6, respectively; P < 0.001 vs simulated ischemia and reoxygenation alone in each instance) but not the myocardium from patients receiving nicorandil (creatine kinase, 3.3 +/- 0.1 and 3.3 +/- 0.2, respectively; 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 89.7 +/- 6.5 and 86.4 +/- 5.2, respectively; P >.2 vs simulated ischemia and reoxygenation alone in each instance). In study 2 the administration of diazoxide had identical protection to that of ischemic preconditioning in the myocardium of patients not receiving nicorandil (creatine kinase, 2.1 +/- 0.2 and 2.3 +/- 0.1, respectively; 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 141.4 +/- 7.4 and 131.4 +/- 4.9, respectively; P < 0.001 vs simulated ischemia and reoxygenation alone in each instance) but failed to precondition the myocardium from patients treated with nicorandil (creatine kinase, 3.3 +/- 0.2 and 3.4 +/- 0.1, respectively; 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 90.1 +/- 7.2 and 86.4 +/- 5.2, respectively; P > 0.2 vs simulated ischemia and reoxygenation alone in each instance). In study 3 phorbol 12-myristate 13-acetate or anisomycin given for 10 minutes before simulated ischemia and reoxygenation afforded similar protection to that of ischemic preconditioning in the myocardium from patients with (creatine kinase, 1.5 +/- 0.3 and 1.4 +/- 0.1, respectively; 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 147.0 +/- 4.9 and 160.0 +/- 16.1, respectively; P < 0.001 vs simulated ischemia and reoxygenation alone in each instance) and without nicorandil (creatine kinase, 1.7 +/- 0.4 and 1.4 +/- 0.2, respectively; 3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 160.3 +/- 13.6 and 158.3 +/- 11.8, respectively; P <.001 vs simulated ischemia and reoxygenation alone in each instance).

CONCLUSION

The myocardium of patients chronically treated with nicorandil cannot be preconditioned either by ischemia or pharmacologically, and this is because of unresponsive mitochondrial adenosine triphosphate-dependent potassium channels. However, protection can be obtained by protein kinase C and p38 mitogen-activated protein kinase activation, which are downstream of mitochondrial adenosine triphosphate-dependent potassium channels in the signaling transduction pathway of preconditioning.

摘要

背景

线粒体三磷酸腺苷依赖钾通道开放剂的急性给药可对心脏起到预处理作用,但长期给药是否能诱导永久性保护状态尚不清楚。这些研究调查了线粒体三磷酸腺苷依赖钾通道开放剂尼可地尔长期治疗对人心肌缺血反应及预处理的影响。

方法

从接受或未接受尼可地尔常规治疗(平均20mg/d,持续18.6±2.5个月)且即将接受心脏手术的患者获取右心房组织,切片并平衡30分钟,然后进行90分钟的模拟缺血,接着再灌注120分钟。在研究1中,研究以下几组以调查尼可地尔对心肌缺血易感性以及缺血和药物预处理保护作用的影响:(1)需氧对照;(2)单纯模拟缺血和再灌注;(3)5分钟模拟缺血和5分钟再灌注的缺血预处理;(4)在模拟缺血和再灌注前用去氧肾上腺素(0.1μmol/L)处理5分钟并冲洗5分钟。在研究2中,研究以下几组以调查尼可地尔对线粒体三磷酸腺苷依赖钾通道反应性的影响:(1)需氧对照;(2)模拟缺血和再灌注;(3)缺血预处理;(4)在模拟缺血和再灌注前用二氮嗪(100μmol/L)处理10分钟;(5)在模拟缺血和再灌注前用5-羟基癸酸(1mmol/L)处理10分钟。在研究3中,纳入以下几组以调查尼可地尔长期给药对预处理中涉及的激酶途径的影响:(1)需氧对照;(2)单纯模拟缺血和再灌注;(3)缺血预处理;(4)在模拟缺血和再灌注前用佛波酯12-肉豆蔻酸酯13-乙酸酯(1μmol/L),一种蛋白激酶C激活剂,处理10分钟;(5)在模拟缺血和再灌注前用茴香霉素(1nmol/L),一种p38丝裂原活化蛋白激酶激活剂,处理10分钟。在每个实验方案结束时,测量肌酸激酶的泄漏量(单位为每克湿重)以及3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐转化为不溶性甲臜染料的减少量(单位为每克湿重毫摩尔)。

结果

在研究1中,接受或未接受尼可地尔治疗的组中,模拟缺血和再灌注诱导的肌酸激酶泄漏量以及3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐的减少量相似(肌酸激酶分别为3.4±0.1和3.5±0.2;3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐分别为74.6±3.9和67.9±7.3;每种情况P>.2)。缺血预处理和药物预处理可保护未接受尼可地尔治疗患者的心肌(肌酸激酶分别为2.3±0.1和2.4±0.1;3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐分别为131.4±4.9和128.4±5.6;每种情况与单纯模拟缺血和再灌注相比P<0.001),但不能保护接受尼可地尔治疗患者的心肌(肌酸激酶分别为3.3±0.1和3.3±0.2;3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐分别为89.7±6.5和86.4±5.2;每种情况与单纯模拟缺血和再灌注相比P>.2)。在研究2中,二氮嗪的给药对未接受尼可地尔治疗患者的心肌提供了与缺血预处理相同的保护(肌酸激酶分别为2.1±0.2和2.3±0.1;3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐分别为141.4±7.4和131.4±4.9;每种情况与单纯模拟缺血和再灌注相比P<0.001),但未能对接受尼可地尔治疗患者的心肌进行预处理(肌酸激酶分别为3.3±0.2和3.4±0.1;3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐分别为90.1±7.2和86.4±5.2;每种情况与单纯模拟缺血和再灌注相比P>0.2)。在研究3中,在模拟缺血和再灌注前10分钟给予佛波酯12-肉豆蔻酸酯13-乙酸酯或茴香霉素,对接受(肌酸激酶分别为1.5±0.3和1.4±0.1;3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐分别为147.0±4.9和160.0±16.1;每种情况与单纯模拟缺血和再灌注相比P<0.001)和未接受尼可地尔治疗(肌酸激酶分别为1.7±0.4和1.4±0.2;3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐分别为160.3±13.6和158.3±11.8;每种情况与单纯模拟缺血和再灌注相比P<.001)患者的心肌提供了与缺血预处理相似的保护。

结论

长期接受尼可地尔治疗患者的心肌不能通过缺血或药物进行预处理,这是因为线粒体三磷酸腺苷依赖钾通道无反应。然而,通过蛋白激酶C和p38丝裂原活化蛋白激酶激活可获得保护,它们在预处理信号转导途径中线粒体三磷酸腺苷依赖钾通道的下游。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验