Suppr超能文献

通过计算机化给药报告用药错误。

Reporting medication errors through computerized medication administration.

作者信息

Low Debra K, Belcher Jan V R

机构信息

One Touch Technologies, Aliso Viejo, CA, USA.

出版信息

Comput Inform Nurs. 2002 Sep-Oct;20(5):178-83. doi: 10.1097/00024665-200209000-00009.

Abstract

The incidence of medication errors has risen dramatically during the last decade to an alarming number. Nurses report only 5% of significant errors, those considered life threatening. Little research has been done related to medication errors at the administration stage or reporting methods. The purpose of this study was to compare medication error rate per 1,000 doses administered before and after the implementation of a bar code medication administration system. The study was conducted on two medical-surgical units at a midwest government hospital 12 months both before and after the implementation of the Bar Code Medication Administration system. The medication error rate per 1,000 doses administered by a nurse after implementation of the Bar Code Medication Administration system showed an 18% increase. The results probably do not indicate an increase in medication errors but rather an increase in the number of medication errors reported. This research highlights problems with programs evaluating medication errors and new technology implementation. Evaluators must have accurate baseline data before implementation. Past research has shown that the medication error rate has been underreported. In contrast to a staff reporting system, the computerization of medication administration improves the reporting system by reporting all errors. Once a more accurate error rate is known, new technology can be created, evaluated, and refined to reduce medication errors.

摘要

在过去十年中,用药错误的发生率急剧上升至惊人的数字。护士仅报告了5%的重大错误,即那些被认为危及生命的错误。关于给药阶段的用药错误或报告方法的研究很少。本研究的目的是比较实施条形码给药系统前后每1000剂给药的用药错误率。该研究在中西部一家政府医院的两个内科-外科病房进行,在实施条形码给药系统前后各进行了12个月。实施条形码给药系统后,护士每1000剂给药的用药错误率上升了18%。结果可能并不表明用药错误增加,而是报告的用药错误数量增加。这项研究突出了评估用药错误和新技术实施的项目存在的问题。评估人员在实施前必须有准确的基线数据。过去的研究表明,用药错误率一直被低估。与员工报告系统相比,给药的计算机化通过报告所有错误改进了报告系统。一旦知道了更准确的错误率,就可以创建、评估和改进新技术以减少用药错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验