School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia.
Biomolecules. 2020 Nov 30;10(12):1618. doi: 10.3390/biom10121618.
Reduced inhibitory glycinergic neurotransmission is implicated in a number of neurological conditions such as neuropathic pain, schizophrenia, epilepsy and hyperekplexia. Restoring glycinergic signalling may be an effective method of treating these pathologies. Glycine transporters (GlyTs) control synaptic and extra-synaptic glycine concentrations and slowing the reuptake of glycine using specific GlyT inhibitors will increase glycine extracellular concentrations and increase glycine receptor (GlyR) activation. Glycinergic neurotransmission can also be improved through positive allosteric modulation (PAM) of GlyRs. Despite efforts to manipulate this synapse, no therapeutics currently target it. We propose that dual action modulators of both GlyTs and GlyRs may show greater therapeutic potential than those targeting individual proteins. To show this, we have characterized a co-expression system in oocytes consisting of GlyT1 or GlyT2 co-expressed with GlyRα. We use two electrode voltage clamp recording techniques to measure the impact of GlyTs on GlyRs and the effects of modulators of these proteins. We show that increases in GlyT density in close proximity to GlyRs diminish receptor currents. Reductions in GlyR mediated currents are not observed when non-transportable GlyR agonists are applied or when Na is not available. GlyTs reduce glycine concentrations across different concentration ranges, corresponding with their ion-coupling stoichiometry, and full receptor currents can be restored when GlyTs are blocked with selective inhibitors. We show that partial inhibition of GlyT2 and modest GlyRα potentiation using a dual action compound, is as useful in restoring GlyR currents as a full and potent single target GlyT2 inhibitor or single target GlyRα PAM. The co-expression system developed in this study will provide a robust means for assessing the likely impact of GlyR PAMs and GlyT inhibitors on glycine neurotransmission.
抑制性甘氨酸能神经传递减少与多种神经疾病有关,如神经性疼痛、精神分裂症、癫痫和发作性睡病。恢复甘氨酸能信号传递可能是治疗这些病理的有效方法。甘氨酸转运体(GlyTs)控制突触和细胞外甘氨酸浓度,使用特定的 GlyT 抑制剂减缓甘氨酸的再摄取,将增加细胞外甘氨酸浓度并增加甘氨酸受体(GlyR)的激活。甘氨酸能神经传递也可以通过甘氨酸受体的正变构调节(PAM)来改善。尽管人们努力操纵这个突触,但目前没有针对它的治疗方法。我们提出,同时作用于 GlyTs 和 GlyRs 的双重作用调节剂可能比那些针对单个蛋白质的调节剂具有更大的治疗潜力。为了证明这一点,我们在卵母细胞中建立了一个共表达系统,该系统由 GlyT1 或 GlyT2 与 GlyRα 共表达。我们使用双电极电压钳记录技术来测量 GlyTs 对 GlyRs 的影响以及这些蛋白质调节剂的作用。我们发现,GlyTs 密度的增加与 GlyRs 接近会减少受体电流。当应用不可转运的 GlyR 激动剂或当没有 Na 时,不会观察到 GlyR 介导的电流减少。GlyTs 在不同浓度范围内降低甘氨酸浓度,与其离子偶联化学计量数相对应,当用选择性抑制剂阻断 GlyTs 时,可恢复完全受体电流。我们发现,使用双重作用化合物部分抑制 GlyT2 和适度增强 GlyRα,在恢复 GlyR 电流方面与完全和有效 GlyT2 抑制剂或单一目标 GlyRα PAM 一样有用。本研究中开发的共表达系统将为评估 GlyR PAMs 和 GlyT 抑制剂对甘氨酸能神经传递的可能影响提供一种强大的手段。