Enokida Hideki, Gotanda Takenari, Oku Shoichi, Imazono Yoshiharu, Kubo Hiroyuki, Hanada Toshikatsu, Suzuki Shigenori, Inomata Kouhei, Kishiye Takao, Tahara Yoshiyuki, Nishiyama Kenryu, Nakagawa Masayuki
Department of Urology, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan.
Jpn J Cancer Res. 2002 Sep;93(9):1037-46. doi: 10.1111/j.1349-7006.2002.tb02481.x.
We isolated a paclitaxel-resistant cell line (KK47/TX30) from a human bladder cancer cell line (KK47/WT) in order to investigate the mechanism of and reversal agents for paclitaxel resistance. KK47/TX30 cells exhibited 700-fold resistance to paclitaxel and cross-resistance to vinca alkaloids and topoisomerase II inhibitors. Tubulin polymerization assay showed no significant difference in the ratio of polymerized alpha- and beta-tubulin between KK47/WT and KK47/TX30 cells. Western blot analysis demonstrated overexpression of P-glycoprotein (P-gp) and lung resistance-related protein (LRP) in KK47/TX30 cells. Drug accumulation and efflux studies showed that the decreased paclitaxel accumulation in KK47/TX30 cells was due to enhanced paclitaxel efflux. Cell survival assay revealed that verapamil and cepharanthine, conventional P-gp modulators, could completely overcome paclitaxel resistance. To investigate whether new synthetic isoprenoids could overcome paclitaxel resistance, we synthesized 31 isoprenoids based on the structure of N-solanesyl-N,N'-bis(3,4-dimethoxybenzyl)ethylenediamine (SDB), which could reverse multidrug resistance (MDR), as shown previously. Among those examined, trans-N,N'-bis(3,4-dimethoxybenzyl)-N-solanesyl-1,2-diaminocyclohexane (N-5228) could completely reverse paclitaxel resistance in KK47/TX30 cells. N-5228 inhibited photoaffinity labeling of P-gp by [(3)H]azidopine, suggesting that N-5228 could bind to P-gp directly and could be a substrate of P-gp. Next, we investigated structural features of these 31 isoprenoids in order to determine the structural requirements for the reversal of P-gp-mediated paclitaxel resistance, suggesting that the following structural features are important for overcoming paclitaxel resistance: (1) a basic structure of 8 to 10 isoprene units, (2) a cyclohexane ring or benzene ring within the framework, (3) two cationic sites in close proximity to each other, and (4) a benzyl group with 3,4-dimethoxy functionalities, which have moderate electron-donating ability. These findings may provide valuable information for the development of P-gp-mediated MDR-reversing agents.
为了研究紫杉醇耐药的机制及逆转剂,我们从人膀胱癌细胞系(KK47/WT)中分离出一株紫杉醇耐药细胞系(KK47/TX30)。KK47/TX30细胞对紫杉醇表现出700倍的耐药性,对长春花生物碱和拓扑异构酶II抑制剂具有交叉耐药性。微管蛋白聚合试验显示,KK47/WT细胞与KK47/TX30细胞中α-和β-微管蛋白的聚合比例无显著差异。蛋白质免疫印迹分析表明,KK47/TX30细胞中P-糖蛋白(P-gp)和肺耐药相关蛋白(LRP)过表达。药物蓄积和外排研究表明,KK47/TX30细胞中紫杉醇蓄积减少是由于紫杉醇外排增强所致。细胞存活试验显示,传统的P-gp调节剂维拉帕米和千金藤素能够完全克服紫杉醇耐药性。为了研究新型合成类异戊二烯是否能够克服紫杉醇耐药性,我们基于N-茄尼基-N,N'-双(3,4-二甲氧基苄基)乙二胺(SDB)的结构合成了31种类异戊二烯,如前所示,SDB能够逆转多药耐药(MDR)。在所检测的化合物中,反式-N,N'-双(3,4-二甲氧基苄基)-N-茄尼基-1,2-二氨基环己烷(N-5228)能够完全逆转KK47/TX30细胞的紫杉醇耐药性。N-5228抑制了[³H]叠氮平对P-gp的光亲和标记,表明N-5228能够直接与P-gp结合,并且可能是P-gp的底物。接下来,我们研究了这31种类异戊二烯的结构特征,以确定逆转P-gp介导的紫杉醇耐药性的结构要求,结果表明以下结构特征对于克服紫杉醇耐药性很重要:(1)8至10个异戊二烯单元的基本结构;(2)骨架内的环己烷环或苯环;(3)两个彼此紧邻的阳离子位点;(4)具有适度供电子能力的3,4-二甲氧基官能团的苄基。这些发现可能为开发P-gp介导的MDR逆转剂提供有价值的信息。