Suppr超能文献

从拟南芥突变体的特征推断光敏色素在黄化植物和绿色植物中的不同作用。

Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants.

作者信息

Chory J., Peto C. A., Ashbaugh M., Saganich R., Pratt L., Ausubel F.

机构信息

Plant Biology Laboratory, The Salk Institute, P.O. Box 85800, San Diego, California 92138.

出版信息

Plant Cell. 1989 Sep;1(9):867-880. doi: 10.1105/tpc.1.9.867.

Abstract

We have isolated a new complementation group of Arabidopsis thaliana long hypocotyl mutant (hy6) and have characterized a variety of light-regulated phenomena in hy6 and other previously isolated A. thaliana hy mutants. Among six complementation groups that define the HY phenotype in A. thaliana, three (hy1, hy2, and hy6) had significantly lowered levels of photoreversibly detectable phytochrome, although near wild-type levels of the phytochrome apoprotein were present in all three mutants. When photoregulation of chlorophyll a/b binding protein (cab) gene expression was examined, results obtained depended dramatically on the light regime employed. Using the red/far-red photoreversibility assay on etiolated plants, the accumulation of cab mRNAs was considerably less in the phytochrome-deficient mutants than in wild-type A. thaliana seedlings. When grown in high-fluence rate white light, however, the mutants accumulated wild-type levels of cab mRNAs and other mRNAs thought to be regulated by phytochrome. An examination of the light-grown phenotypes of the phytochrome-deficient mutants, using biochemical, molecular, and morphological techniques, revealed that the mutants displayed incomplete chloroplast and leaf development under conditions where wild-type chloroplasts developed normally. Thus, although phytochrome may play a role in gene expression in etiolated plants, a primary role for phytochrome in green plants is likely to be in modulating the amount of chloroplast development, rather than triggering the initiation of events (e.g., gene expression) associated with chloroplast development.

摘要

我们分离出了拟南芥长下胚轴突变体(hy6)的一个新的互补群,并对hy6及其他先前分离出的拟南芥hy突变体中的多种光调节现象进行了表征。在确定拟南芥HY表型的六个互补群中,有三个(hy1、hy2和hy6)的光可逆检测到的光敏色素水平显著降低,尽管这三个突变体中光敏色素脱辅基蛋白的水平接近野生型。当检测叶绿素a/b结合蛋白(cab)基因表达的光调节时,所得结果在很大程度上取决于所采用的光照条件。在黄化苗上使用红/远红光可逆性检测,光敏色素缺陷型突变体中cab mRNA的积累量比野生型拟南芥幼苗中的少得多。然而,当在高通量率白光下生长时,这些突变体积累的cab mRNA和其他被认为受光敏色素调节的mRNA水平与野生型相当。利用生化、分子和形态学技术对光敏色素缺陷型突变体的光生长表型进行检测,结果表明,在野生型叶绿体正常发育的条件下,这些突变体的叶绿体和叶片发育不完全。因此,尽管光敏色素可能在黄化苗的基因表达中起作用,但在绿色植物中,光敏色素的主要作用可能是调节叶绿体发育的程度,而不是触发与叶绿体发育相关的事件(如基因表达)的起始。

相似文献

3
The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B.
Plant Cell. 1991 Dec;3(12):1263-1274. doi: 10.1105/tpc.3.12.1263.
5
Light-Stimulated Cotyledon Expansion in Arabidopsis Seedlings (The Role of Phytochrome B).
Plant Physiol. 1994 Mar;104(3):1027-1032. doi: 10.1104/pp.104.3.1027.
6
Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A.
Plant Physiol. 1993 May;102(1):269-277. doi: 10.1104/pp.102.1.269.

引用本文的文献

1
Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants.
Cell Mol Life Sci. 2022 Jun 10;79(7):358. doi: 10.1007/s00018-022-04368-1.
3
Light Gradient-Based Screening of on a 384-Well Type Plant Array Chip.
Micromachines (Basel). 2020 Feb 12;11(2):191. doi: 10.3390/mi11020191.
4
Mesophyll-specific phytochromes impact chlorophyll light-harvesting complexes (LHCs) and non-photochemical quenching.
Plant Signal Behav. 2019;14(7):1609857. doi: 10.1080/15592324.2019.1609857. Epub 2019 Apr 30.
8
Phytochrome A and B Regulate Primary Metabolism in Leaves in Response to Light.
Front Plant Sci. 2017 Aug 9;8:1394. doi: 10.3389/fpls.2017.01394. eCollection 2017.
9
Increased endogenous cytokinin in the Arabidopsis amp1 mutant corresponds with de-etiolation responses.
Planta. 1996 Apr;198(4):549-556. doi: 10.1007/BF00262641. Epub 2017 Mar 18.
10
Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1.
Plant Physiol. 2017 May;174(1):387-404. doi: 10.1104/pp.16.01964. Epub 2017 Mar 14.

本文引用的文献

1
Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens.
Science. 1986 Oct 24;234(4775):464-6. doi: 10.1126/science.234.4775.464.
5
Synthesis of phytochrome apoprotein and chromophore are not coupled obligatorily.
Plant Physiol. 1986 Aug;81(4):1014-6. doi: 10.1104/pp.81.4.1014.
6
Light, temperature, and anthocyanin production.
Plant Physiol. 1986 Jul;81(3):922-4. doi: 10.1104/pp.81.3.922.
7
Identification of a highly conserved domain on phytochrome from angiosperms to algae.
Plant Physiol. 1986 Apr;80(4):982-7. doi: 10.1104/pp.80.4.982.
9
Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels.
EMBO J. 1987 Jun;6(6):1571-9. doi: 10.1002/j.1460-2075.1987.tb02402.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验