Zanella Juan, Calzetta Esteban
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-Ciudad Universitaria, Pabellon I, Argentina.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):036134. doi: 10.1103/PhysRevE.66.036134. Epub 2002 Sep 27.
We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion.
我们研究非平衡场论的重整化群方法。我们表明,通过对闭时路径作用量进行迭代粗粒化,可以导出非平凡的重整化群流。这种重整化群与量子场论教科书中常见的不同,因为它描述了非平凡的噪声和耗散。我们给出一个具体例子,其中闭时路径作用量的变化导致了所谓的卡达尔 - 帕里西 - 张方程,并表明通过对该作用量进行粗粒化得到的重整化群,与直接对运动方程进行粗粒化导出的动力学重整化群一致。