Le Doussal Pierre, Wiese Kay Jörg
CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France.
Phys Rev Lett. 2002 Sep 16;89(12):125702. doi: 10.1103/PhysRevLett.89.125702. Epub 2002 Aug 27.
We introduce a method, based on an exact calculation of the effective action at large N, to bridge the gap between mean-field theory and renormalization in complex systems. We apply it to a d-dimensional manifold in a random potential for large embedding space dimension N. This yields a functional renormalization group equation valid for any d, which contains both the O(epsilon=4-d) results of Balents-Fisher and some of the nontrivial results of the Mezard-Parisi solution, thus shedding light on both. Corrections are computed at order O(1/N). Applications to the Kardar-Parisi-Zhang growth model, random field, and mode coupling in glasses are mentioned.
我们引入一种基于大N时有效作用量精确计算的方法,以弥合复杂系统中平均场理论与重整化之间的差距。我们将其应用于大嵌入空间维度N下随机势中的d维流形。这产生了一个对任意d都有效的泛函重整化群方程,它既包含了巴伦茨 - 费舍尔的O(ε = 4 - d)结果,也包含了梅扎德 - 帕里西解的一些非平凡结果,从而对两者都有了更清晰的认识。修正项是在O(1/N)阶计算的。文中还提到了该方法在卡达尔 - 帕里西 - 张增长模型、随机场以及玻璃中的模式耦合方面的应用。