Sinha Neeti, Smith-Gill Sandra J
Basic Research Laboratory, Center for Cancer Research, Bldg. 469, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA.
Protein Pept Lett. 2002 Oct;9(5):367-77. doi: 10.2174/0929866023408508.
Protein folding, binding, catalytic activity and molecular recognition all involve molecular movements, with varying extents. The molecular movements are brought upon via flexible regions. Stemming from sequence, a fine tuning of electrostatic and hydrophobic properties of the protein fold determine flexible and rigid regions. Studies show flexible regions usually lack electrostatic interactions, such as salt-bridges and hydrogen-bonds, while the rigid regions often have larger number of such electrostatic interactions. Protein flexible regions are not simply an outcome of looser packing or instability, rather they are evolutionally selected. In this review article we highlight the significance of protein flexibilities in folding, binding and function, and their structural and thermodynamic determinants. Our electrostatic calculations and molecular dynamic simulations on an antibody-antigen complex further illustrate the importance of protein flexibilities in binding and function.
蛋白质折叠、结合、催化活性及分子识别均在不同程度上涉及分子运动。这些分子运动通过柔性区域产生。源于序列,蛋白质折叠的静电和疏水性质的微调决定了柔性和刚性区域。研究表明,柔性区域通常缺乏静电相互作用,如盐桥和氢键,而刚性区域往往有更多此类静电相互作用。蛋白质柔性区域并非仅仅是堆积较松散或不稳定的结果,而是经过进化选择的。在这篇综述文章中,我们强调了蛋白质柔性在折叠、结合及功能方面的重要性,以及它们的结构和热力学决定因素。我们对抗体 - 抗原复合物进行的静电计算和分子动力学模拟进一步阐明了蛋白质柔性在结合和功能方面的重要性。