Kony D, Damm W, Stoll S, Van Gunsteren W F
CABE, Department of Inorganic, Analytical and Applied Chemistry, Science II, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
J Comput Chem. 2002 Nov 30;23(15):1416-29. doi: 10.1002/jcc.10139.
This work describes an improved version of the original OPLS-all atom (OPLS-AA) force field for carbohydrates (Damm et al., J Comp Chem 1997, 18, 1955). The improvement is achieved by applying additional scaling factors for the electrostatic interactions between 1,5- and 1,6-interactions. This new model is tested first for improving the conformational energetics of 1,2-ethanediol, the smallest polyol. With a 1,5-scaling factor of 1.25 the force field calculated relative energies are in excellent agreement with the ab initio-derived data. Applying the new 1,5-scaling makes it also necessary to use a 1,6-scaling factor for the interactions between the C4 and C6 atoms in hexopyranoses. After torsional parameter fitting, this improves the conformational energetics in comparison to the OPLS-AA force field. The set of hexopyranoses included in the torsional parameter derivation consists of the two anomers of D-glucose, D-mannose, and D-galactose, as well as of the methyl-pyranosides of D-glucose, D-mannose. Rotational profiles for the rotation of the exocyclic group and of different hydroxyl groups are also compared for the two force fields and at the ab initio level of theory. The new force field reduces the overly high barriers calculated using the OPLS-AA force field. This leads to better sampling, which was shown to produce more realistic conformational behavior for hexopyranoses in liquid simulation. From 10-ns molecular dynamics (MD) simulations of alpha-D-glucose and alpha-D-galactose the ratios for the three different conformations of the hydroxymethylene group and the average (3)J(H,H) coupling constants are derived and compared to experimental values. The results obtained for OPLS-AA-SEI force field are in good agreement with experiment whereas the properties derived for the OPLS-AA force field suffer from sampling problems. The undertaken investigations show that the newly derived OPLS-AA-SEI force field will allow simulating larger carbohydrates or polysaccharides with improved sampling of the hydroxyl groups.
本文描述了一种针对碳水化合物的原始OPLS全原子(OPLS-AA)力场的改进版本(丹姆等人,《计算化学杂志》,1997年,第18卷,第1955页)。这种改进是通过对1,5-和1,6-相互作用之间的静电相互作用应用额外的缩放因子来实现的。首先对这个新模型进行了测试,以改善最小多元醇1,2-乙二醇的构象能量学。当1,5-缩放因子为1.25时,该力场计算出的相对能量与从头算得出的数据非常吻合。应用新的1,5-缩放因子还使得有必要对己吡喃糖中C4和C6原子之间的相互作用使用1,6-缩放因子。经过扭转参数拟合后,与OPLS-AA力场相比,这改善了构象能量学。用于推导扭转参数的己吡喃糖集合包括D-葡萄糖、D-甘露糖和D-半乳糖的两种异头物,以及D-葡萄糖、D-甘露糖的甲基吡喃糖苷。还比较了两个力场以及从头算理论水平下环外基团和不同羟基旋转的旋转轮廓。新的力场降低了使用OPLS-AA力场计算出的过高势垒。这导致了更好的采样,在液体模拟中已表明这会为己吡喃糖产生更现实的构象行为。通过对α-D-葡萄糖和α-D-半乳糖进行10纳秒的分子动力学(MD)模拟,得出了羟亚甲基三种不同构象的比例以及平均(3)J(H,H)耦合常数,并与实验值进行了比较。OPLS-AA-SEI力场得到的结果与实验结果吻合良好,而OPLS-AA力场得出的性质存在采样问题。所进行的研究表明,新推导的OPLS-AA-SEI力场将能够以改进的羟基采样来模拟更大的碳水化合物或多糖。