Marder Eve, Thirumalai Vatsala
Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454-9110, USA.
Neural Netw. 2002 Jun-Jul;15(4-6):479-93. doi: 10.1016/s0893-6080(02)00043-6.
All network dynamics emerge from the complex interaction between the intrinsic membrane properties of network neurons and their synaptic connections. Nervous systems contain numerous amines and neuropeptides that function to both modulate the strength of synaptic connections and the intrinsic properties of network neurons. Consequently network dynamics can be tuned and configured in different ways, as a function of the actions of neuromodulators. General principles of the organization of modulatory systems in nervous systems include: (a) many neurons and networks are multiply modulated, (b) there is extensive convergence and divergence in modulator action, and (c) some modulators may be released extrinsically to the modulated circuit, while others may be released by some of the circuit neurons themselves, and act intrinsically. Some of the computational consequences of these features of modulator action are discussed.
所有网络动力学均源于网络神经元的内在膜特性与其突触连接之间的复杂相互作用。神经系统包含众多胺类和神经肽,它们既能调节突触连接的强度,又能调节网络神经元的内在特性。因此,网络动力学可以根据神经调质的作用以不同方式进行调节和配置。神经系统中调节系统组织的一般原则包括:(a) 许多神经元和网络受到多种调节;(b) 调节因子的作用存在广泛的汇聚和发散;(c) 一些调节因子可能在被调节的回路外部释放,而其他调节因子可能由回路中的一些神经元自身释放并发挥内在作用。本文讨论了调节因子作用的这些特征所产生的一些计算结果。