Schwamb Addison, Yu Zongxi, Ching ShiNung
Washington University in St. Louis, St. Louis, MO, USA.
bioRxiv. 2025 May 7:2025.05.01.651677. doi: 10.1101/2025.05.01.651677.
Understanding the mechanisms underlying brain dynamics is a long-held goal in neuroscience. However, these dynamics are both individualized and nonstationary, making modeling challenging. Here, we present a data-driven approach to modeling nonstationary dynamics based on principles of neuromodulation, at the level of individual subjects.
Previously, we developed the mesoscale individualized neural dynamics (MINDy) modeling approach to capture individualized brain dynamics which do not change over time. Here, we extend the MINDy approach by adding a modulatory component which is multiplied by a set of baseline, stationary connectivity weights. We validate this model on both synthetic data and publicly available EEG data in the context of anesthesia, a known modulator of neural dynamics.
We find that our modulated MINDy approach is accurate, individualized, and reliable. Additionally, we find that our models yield biologically interpretable inferences regarding the effects of propofol anesthesia on mesoscale cortical networks, consistent with previous literature on the neuromodulatory effects of propofol.
Ultimately, our data-driven modeling approach is reliable and scalable, and provides insight into mechanisms underlying observed brain dynamics. Our modeling methodology can be used to infer insights about modulation dynamics in the brain in a number of different contexts.
理解大脑动力学背后的机制是神经科学中长期以来的目标。然而,这些动力学既具有个体特异性又非平稳,这使得建模具有挑战性。在此,我们提出一种基于神经调节原理的数据驱动方法,用于在个体水平上对非平稳动力学进行建模。
此前,我们开发了中尺度个体神经动力学(MINDy)建模方法,以捕捉不随时间变化的个体大脑动力学。在此,我们通过添加一个调制成分来扩展MINDy方法,该调制成分与一组基线、平稳的连接权重相乘。我们在合成数据和公开可用的脑电图数据上,在麻醉(一种已知的神经动力学调节剂)的背景下验证了该模型。
我们发现我们的调制MINDy方法准确、具有个体特异性且可靠。此外,我们发现我们的模型对丙泊酚麻醉对中尺度皮质网络的影响产生了具有生物学可解释性的推断,这与先前关于丙泊酚神经调节作用的文献一致。
最终,我们的数据驱动建模方法可靠且可扩展,并为观察到的大脑动力学背后的机制提供了见解。我们的建模方法可用于在许多不同背景下推断关于大脑中调制动力学的见解。