Mukherjee Pratik, Miller Jeffrey H, Shimony Joshua S, Philip Joseph V, Nehra Deepika, Snyder Abraham Z, Conturo Thomas E, Neil Jeffrey J, McKinstry Robert C
Mallinckrodt Institute of Radiology, St. Louis Children's Hospital, Washington University Medical Center, St. Louis, MO, USA.
AJNR Am J Neuroradiol. 2002 Oct;23(9):1445-56.
Conventional MR imaging findings of human brain development are thought to result from decreasing water content, increasing macromolecular concentration, and myelination. We use diffusion-tensor MR imaging to test theoretical models that incorporate hypotheses regarding how these maturational processes influence water diffusion in developing gray and white matter.
Experimental data were derived from diffusion-tensor imaging of 167 participants, ages 31 gestational weeks to 11 postnatal years. An isotropic diffusion model was applied to the gray matter of the basal ganglia and thalamus. A model that assumes changes in the magnitude of diffusion while maintaining cylindrically symmetric anisotropy was applied to the white matter of the corpus callosum and internal capsule. Deviations of the diffusion tensor from the ideal model predictions, due to measurement noise, were estimated by using Monte Carlo simulations.
Developing gray matter of the basal ganglia and developing white matter of the internal capsule and corpus callosum largely conformed to theory, with only small departures from model predictions in older children. However, data from the thalamus substantially diverged from predicted values, with progressively larger deviations from the model with increasing participant age.
Changes in water diffusion during maturation of central gray and white matter structures can largely be explained by theoretical models incorporating simple assumptions regarding the influence of brain water content and myelination, although deviations from theory increase as the brain matures. Diffusion-tensor MR imaging is a powerful method for studying the process of brain development, with both scientific and clinical applications.
人脑发育的传统磁共振成像表现被认为是由含水量降低、大分子浓度增加以及髓鞘形成所致。我们使用扩散张量磁共振成像来检验理论模型,这些模型纳入了关于这些成熟过程如何影响发育中的灰质和白质中水扩散的假设。
实验数据来自对167名参与者的扩散张量成像,参与者年龄从孕31周到出生后11岁。将各向同性扩散模型应用于基底神经节和丘脑的灰质。将一个假设扩散幅度变化同时保持圆柱对称各向异性的模型应用于胼胝体和内囊的白质。利用蒙特卡罗模拟估计由于测量噪声导致的扩散张量与理想模型预测值的偏差。
基底神经节发育中的灰质以及内囊和胼胝体发育中的白质在很大程度上符合理论,在年龄较大的儿童中与模型预测值仅有小的偏差。然而,丘脑的数据与预测值有很大差异,随着参与者年龄的增加,与模型的偏差逐渐增大。
尽管随着大脑成熟,与理论的偏差会增加,但纳入关于脑含水量和髓鞘形成影响的简单假设的理论模型在很大程度上可以解释中枢灰质和白质结构成熟过程中的水扩散变化。扩散张量磁共振成像是研究脑发育过程的一种强大方法,具有科学和临床应用价值。