Suppr超能文献

两个随机序列之间k词匹配数的分布模式。

Distributional regimes for the number of k-word matches between two random sequences.

作者信息

Lippert Ross A, Huang Haiyan, Waterman Michael S

机构信息

Informatics Research, Celera Genomics, Rockville, MD 20878, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):13980-9. doi: 10.1073/pnas.202468099. Epub 2002 Oct 8.

Abstract

When comparing two sequences, a natural approach is to count the number of k-letter words the two sequences have in common. No positional information is used in the count, but it has the virtue that the comparison time is linear with sequence length. For this reason this statistic D(2) and certain transformations of D(2) are used for EST sequence database searches. In this paper we begin the rigorous study of the statistical distribution of D(2). Using an independence model of DNA sequences, we derive limiting distributions by means of the Stein and Chen-Stein methods and identify three asymptotic regimes, including compound Poisson and normal. The compound Poisson distribution arises when the word size k is large and word matches are rare. The normal distribution arises when the word size is small and matches are common. Explicit expressions for what is meant by large and small word sizes are given in the paper. However, when word size is small and the letters are uniformly distributed, the anticipated limiting normal distribution does not always occur. In this situation the uniform distribution provides the exception to other letter distributions. Therefore a naive, one distribution fits all, approach to D(2) statistics could easily create serious errors in estimating significance.

摘要

在比较两个序列时,一种自然的方法是计算这两个序列共有的k字母单词的数量。计数时不使用位置信息,但它的优点是比较时间与序列长度呈线性关系。因此,这个统计量D(2)以及D(2)的某些变换被用于EST序列数据库搜索。在本文中,我们开始对D(2)的统计分布进行严格研究。利用DNA序列的独立性模型,我们通过斯坦因方法和陈 - 斯坦因方法推导出极限分布,并确定了三种渐近情形,包括复合泊松分布和正态分布。当单词大小k较大且单词匹配很少时会出现复合泊松分布。当单词大小较小时且匹配很常见时会出现正态分布。本文给出了大单词大小和小单词大小具体含义的明确表达式。然而,当单词大小较小时且字母均匀分布时,预期的极限正态分布并不总是出现。在这种情况下,均匀分布是其他字母分布的例外。因此,对D(2)统计采用一种天真的、一种分布适用于所有情况的方法在估计显著性时很容易产生严重错误。

相似文献

1
Distributional regimes for the number of k-word matches between two random sequences.两个随机序列之间k词匹配数的分布模式。
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):13980-9. doi: 10.1073/pnas.202468099. Epub 2002 Oct 8.
5
Separating significant matches from spurious matches in DNA sequences.区分DNA序列中真实匹配与虚假匹配。
J Comput Biol. 2012 Jan;19(1):1-12. doi: 10.1089/cmb.2011.0070. Epub 2011 Dec 9.
6
Characterizing the D2 statistic: word matches in biological sequences.表征D2统计量:生物序列中的单词匹配
Stat Appl Genet Mol Biol. 2009;8:Article 43. doi: 10.2202/1544-6115.1447. Epub 2009 Oct 8.
9
Optimal Stein-type goodness-of-fit tests for count data.最优 Stein 型拟合优度检验用于计数数据。
Biom J. 2023 Feb;65(2):e2200073. doi: 10.1002/bimj.202200073. Epub 2022 Sep 27.

引用本文的文献

1
-mer approaches for biodiversity genomics.用于生物多样性基因组学的-mer方法。
Genome Res. 2025 Feb 14;35(2):219-230. doi: 10.1101/gr.279452.124.
3
Insertions and deletions as phylogenetic signal in an alignment-free context.插入和缺失作为无比对背景下的系统发育信号。
PLoS Comput Biol. 2022 Aug 8;18(8):e1010303. doi: 10.1371/journal.pcbi.1010303. eCollection 2022 Aug.
6

本文引用的文献

3
AsMamDB: an alternative splice database of mammals.AsMamDB:一个哺乳动物可变剪接数据库。
Nucleic Acids Res. 2001 Jan 1;29(1):260-3. doi: 10.1093/nar/29.1.260.
10
Approximations to profile score distributions.
J Comput Biol. 1994 Summer;1(2):93-104. doi: 10.1089/cmb.1994.1.93.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验