Suppr超能文献

食品分析中优化的不确定度:四种不同“分析物-商品”组合之间的应用与比较

Optimised uncertainty in food analysis: application and comparison between four contrasting 'analyte-commodity' combinations.

作者信息

Lyn Jennifer A, Ramsey Michael H, Wood Roger

机构信息

Centre for Environmental Research, School of Chemistry, Physics and Environmental Science, University of Sussex, Falmer, Brighton, UK.

出版信息

Analyst. 2002 Sep;127(9):1252-60. doi: 10.1039/b203669j.

Abstract

The optimised uncertainty (OU) methodology is applied across a range of analyte-commodity combinations. The commodities and respective analytes under investigation were chosen to encompass a range of input factors: measurement costs (sampling and analytical), sampling uncertainties, analytical uncertainties and potential consequence costs which may be incurred as a result of misclassification. Two types of misclassification are identified-false compliance and false non-compliance. These terms can be used across a wide range of foodstuffs that have regulations requiring either minimum compositional requirements, maximum contaminant allowances or compositional specifications. The latter refers to foodstuffs with regulations that state an allowable tolerance around the compositional specification, i.e. the upper specification limit (USL) and the lower specification limit (LSL). The traditional OU methodology has been adapted so that it is applicable in these cases and has been successfully applied in practice. The Newton-Raphson method has been used to determine the optimal uncertainty value for the two case studies in which analyte concentration is assessed against a 'single threshold' regulatory requirement. This numerical method was shown to give a value of the optimal uncertainty that is practically identical to that given by the previously used method of visual inspection. The expectation of financial loss was reduced by an average of 65% over the four commodities by the application of the OU methodology, showing the benefit of the method.

摘要

优化不确定度(OU)方法应用于一系列分析物 - 商品组合。选择所研究的商品和相应分析物以涵盖一系列输入因素:测量成本(采样和分析)、采样不确定度、分析不确定度以及因错误分类可能产生的潜在后果成本。识别出两种类型的错误分类——假合格和假不合格。这些术语可用于广泛的食品,这些食品有规定要求要么有最低成分要求、最大污染物限量,要么有成分规格。后者指的是有规定表明围绕成分规格有允许公差的食品,即上规格限(USL)和下规格限(LSL)。传统的OU方法已作调整,使其适用于这些情况,并已在实践中成功应用。牛顿 - 拉弗森方法已用于确定两个案例研究的最佳不确定度值,在这两个案例中,根据“单一阈值”监管要求评估分析物浓度。结果表明,这种数值方法给出的最佳不确定度值与先前使用的目视检查方法给出的值实际相同。通过应用OU方法,四种商品的财务损失预期平均降低了65%,显示了该方法的益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验