Suppr超能文献

优化不确定性方法的两阶段应用:一项实际评估。

Two-stage application of the optimised uncertainty method: a practical assessment.

作者信息

Lyn Jennifer A, Ramsey Michael H, Damant Andrew P, Wood Roger

机构信息

Centre for Environmental Research, School of Life Sciences, University of Sussex, Falmer, Brighton, UKBN1 9QJ.

出版信息

Analyst. 2005 Sep;130(9):1271-9. doi: 10.1039/b506274h. Epub 2005 Jul 26.

Abstract

Uncertainty estimates from routine sampling and analytical procedures can be assessed as being fit for purpose using the optimised uncertainty (OU) method. The OU method recommends an optimal level of uncertainty that should be reached in order to minimise the expected financial loss, given a misclassification of a batch as a result of the uncertainty. Sampling theory can used as a predictive tool when a change in sampling uncertainty is recommended by the OU method. The OU methodology has been applied iteratively for the first time using a case study of wholesale butter and the determination of five quality indicators (moisture, fat, solids-not-fat (SNF), peroxide value (PV) and free fatty acid (FFA)). The sampling uncertainty (s(samp)) was found to be sub-optimal for moisture and PV determination, for 3-fold composite samples. A revised sampling protocol was devised using Gy's sampling theory. It was predicted that an increase in sample mass would reduce the sampling uncertainty to the optimal level, resulting in a saving in expectation of loss of over pounds 2000 per 20 tonne batch, when compared to current methods. Application of the optimal protocol did not however, achieve the desired reduction in s(samp) due to limitations in sampling theory. The OU methodology proved to be a useful tool in identifying broad weaknesses within a routine protocol and assessing fitness for purpose. However, the successful routine application of sampling theory, as part of the optimisation process, requires substantial prior knowledge of the sampling target.

摘要

通过优化不确定度(OU)方法,可以评估常规采样和分析程序得出的不确定度估计是否符合目的。OU方法推荐了一个应达到的最佳不确定度水平,以便在因不确定度导致批次误分类的情况下,将预期财务损失降至最低。当OU方法建议改变采样不确定度时,采样理论可作为一种预测工具。OU方法首次通过一个批发黄油的案例研究以及五个质量指标(水分、脂肪、非脂固体(SNF)、过氧化值(PV)和游离脂肪酸(FFA))的测定进行了迭代应用。对于三倍复合样品,发现水分和PV测定的采样不确定度(s(samp))并非最佳。利用吉氏采样理论设计了修订后的采样方案。据预测,增加样品质量将把采样不确定度降低到最佳水平,与当前方法相比,每20吨批次预计可节省超过2000英镑的损失。然而,由于采样理论的局限性,应用最佳方案并未实现s(samp)的预期降低。OU方法被证明是识别常规方案中广泛存在的弱点并评估是否符合目的的有用工具。然而,作为优化过程的一部分,采样理论的成功常规应用需要对采样目标有大量的先验知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验