Guo Yuan, Waldron Gareth J, Murrell-Lagnado Ruth
Department of Pharmacology, Tennis Court Road, University of Cambridge, United Kingdom.
J Biol Chem. 2002 Dec 13;277(50):48289-94. doi: 10.1074/jbc.M207987200. Epub 2002 Oct 9.
We have used sulfhydryl-modifying reagents to investigate the regulation of G-protein-activated inward rectifier potassium (GIRK) channels via their cytoplasmic domains. Modification of either the conserved N-terminal cysteines (GIRK1C53 and GIRK2C65) or the middle C-terminal cysteines (GIRK1C310 and GIRK2C321) independently inhibited GIRK1/GIRK2 heteromeric channels. With the exception of GIRK2C65, these cysteines were relatively inaccessible to large modifying reagents. The accessibility was further reduced by a mutation at the end of the second transmembrane domain that stabilized the open state of the channel. Thus it is unlikely that these cysteines line the permeation pathway of the open pore. Cysteines introduced 3 and 6 amino acids upstream of GIRK2C321 (G318C and E315C) were considerably more accessible. The effect of modification was dependent on the charge of the reagent. Modification of E315C in GIRK2 and E304C in GIRK1 by sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) increased the current by approximately 17-fold, whereas modification by 2-aminoethyl methanethiosulfonate hydrochloride (MTSEA(+)), abolished the current. There was no effect on single-channel conductance. Thus a switch in charge at this middle C-terminal position was sufficient to gate the channel open and closed. This glutamate is conserved in all members of the Kir family. The E303K mutation in Kir2.1 inhibits channel function and causes Andersen's syndrome in humans (Plaster, N. M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., Donaldson, M. R., Iannaccone, S. T., Brunt, E., Barohn, R., Clark, J., Deymeer, F., George, A. L., Jr., Fish, F. A., Hahn, A., Nitu, A., Ozdemir, C., Serdaroglu, P., Subramony, S. H., Wolfe, G., Fu, Y. H., and Ptacek, L. J. (2001) Cell 105, 511-519 and Preisig-Muller, R., Schlichthorl, G., Goerge, T., Heinen, S., Bruggemann, A., Rajan, S., Derst, C., Veh, R. W., and Daut, J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7774-7779). Our results suggest that this residue regulates channel gating through an electrostatic mechanism.
我们已使用巯基修饰试剂,通过其胞质结构域来研究G蛋白激活的内向整流钾通道(GIRK)的调控机制。对保守的N端半胱氨酸(GIRK1C53和GIRK2C65)或中间的C端半胱氨酸(GIRK1C310和GIRK2C321)进行修饰,均能独立抑制GIRK1/GIRK2异源通道。除GIRK2C65外,这些半胱氨酸对大型修饰试剂相对不可及。第二个跨膜结构域末端的突变使通道的开放状态稳定,进一步降低了其可及性。因此,这些半胱氨酸不太可能位于开放孔道的通透路径上。在GIRK2C321上游3和6个氨基酸处引入的半胱氨酸(G318C和E315C)的可及性要高得多。修饰的效果取决于试剂的电荷。用甲硫基磺酸(2-磺基乙基)钠盐(MTSES(-))修饰GIRK2中的E315C和GIRK1中的E304C,使电流增加约17倍,而用盐酸甲硫基磺酸(2-氨基乙基)盐(MTSEA(+))修饰则使电流消失。对单通道电导没有影响。因此,在这个中间C端位置电荷的转换足以使通道打开和关闭。这个谷氨酸在Kir家族的所有成员中都是保守的。Kir2.1中的E303K突变会抑制通道功能,并导致人类患安德森综合征(普拉斯特,N.M.,塔威尔,R.,特里斯坦尼-菲鲁齐,M.,卡农,S.,本达胡,S.,津田,A.,唐纳森,M.R.,伊纳科内,S.T.,布伦特,E.,巴罗恩,R.,克拉克,J.,德米尔,F.,乔治亚,A.L.,Jr.,菲什,F.A.,哈恩,A.,尼图,A.,奥兹德米尔,C.,塞尔达罗格鲁,P.,苏布拉莫尼,S.H.,沃尔夫,G.,傅,Y.H.,和普塔克,L.J.(2001年)《细胞》105卷,511 - 519页;以及普赖西格-米勒,R.,施利希托尔,G.,戈尔格,T.,海嫩,S.,布鲁格曼,A.,拉詹,S.,德斯特,C.,韦赫,R.W.,和道特,J.(2002年)《美国国家科学院院刊》99卷)。我们的结果表明,这个残基通过静电机制调节通道门控。