Fatland Beth L, Ke Jinshan, Anderson Marc D, Mentzen Wieslawa I, Cui Li Wei, Allred C Christy, Johnston Jerry L, Nikolau Basil J, Wurtele Eve Syrkin
Department of Botany, Iowa State University, Ames, IA 50011, USA.
Plant Physiol. 2002 Oct;130(2):740-56. doi: 10.1104/pp.008110.
Acetyl-coenzyme A (CoA) is used in the cytosol of plant cells for the synthesis of a diverse set of phytochemicals including waxes, isoprenoids, stilbenes, and flavonoids. The source of cytosolic acetyl-CoA is unclear. We identified two Arabidopsis cDNAs that encode proteins similar to the amino and carboxy portions of human ATP-citrate lyase (ACL). Coexpression of these cDNAs in yeast (Saccharomyces cerevisiae) confers ACL activity, indicating that both the Arabidopsis genes are required for ACL activity. Arabidopsis ACL is a heteromeric enzyme composed of two distinct subunits, ACLA (45 kD) and ACLB (65 kD). The holoprotein has a molecular mass of 500 kD, which corresponds to a heterooctomer with an A(4)B(4) configuration. ACL activity and the ACLA and ACLB polypeptides are located in the cytosol, consistent with the lack of targeting peptides in the ACLA and ACLB sequences. In the Arabidopsis genome, three genes encode for the ACLA subunit (ACLA-1, At1g10670; ACLA-2, At1g60810; and ACLA-3, At1g09430), and two genes encode the ACLB subunit (ACLB-1, At3g06650 and ACLB-2, At5g49460). The ACLA and ACLB mRNAs accumulate in coordinated spatial and temporal patterns during plant development. This complex accumulation pattern is consistent with the predicted physiological needs for cytosolic acetyl-CoA, and is closely coordinated with the accumulation pattern of cytosolic acetyl-CoA carboxylase, an enzyme using cytosolic acetyl-CoA as a substrate. Taken together, these results indicate that ACL, encoded by the ACLA and ACLB genes of Arabidopsis, generates cytosolic acetyl-CoA. The heteromeric organization of this enzyme is common to green plants (including Chlorophyceae, Marchantimorpha, Bryopsida, Pinaceae, monocotyledons, and eudicots), species of fungi, Glaucophytes, Chlamydomonas, and prokaryotes. In contrast, all known animal ACL enzymes have a homomeric structure, indicating that a evolutionary fusion of the ACLA and ACLB genes probably occurred early in the evolutionary history of this kingdom.
乙酰辅酶A(CoA)在植物细胞的细胞质中用于合成多种植物化学物质,包括蜡、类异戊二烯、芪类和黄酮类。细胞质中乙酰辅酶A的来源尚不清楚。我们鉴定了两个拟南芥cDNA,它们编码的蛋白质与人ATP-柠檬酸裂解酶(ACL)的氨基和羧基部分相似。这些cDNA在酵母(酿酒酵母)中共表达赋予ACL活性,表明拟南芥的这两个基因对ACL活性都是必需的。拟南芥ACL是一种由两个不同亚基组成的异源酶,即ACLA(45 kD)和ACLB(65 kD)。全蛋白的分子量为500 kD,相当于一个具有A(4)B(4)构型的异源八聚体。ACL活性以及ACLA和ACLB多肽位于细胞质中,这与ACLA和ACLB序列中缺乏靶向肽一致。在拟南芥基因组中,三个基因编码ACLA亚基(ACLA-1,At1g10670;ACLA-2,At1g60810;和ACLA-3,At1g09430),两个基因编码ACLB亚基(ACLB-1,At3g06650和ACLB-2,At5g49460)。在植物发育过程中,ACLA和ACLB mRNA以协调的空间和时间模式积累。这种复杂的积累模式与细胞质中乙酰辅酶A的预测生理需求一致,并且与以细胞质乙酰辅酶A为底物的酶——细胞质乙酰辅酶A羧化酶的积累模式密切协调。综上所述,这些结果表明,由拟南芥的ACLA和ACLB基因编码的ACL产生细胞质中的乙酰辅酶A。这种酶的异源结构在绿色植物(包括绿藻纲、地钱目、藓纲、松科、单子叶植物和双子叶植物)、真菌物种、蓝藻、衣藻和原核生物中很常见。相比之下,所有已知的动物ACL酶都具有同源结构,这表明ACLA和ACLB基因的进化融合可能发生在这个王国进化历史的早期。