Suppr超能文献

在幼嫩发育中的香蕉果实中大量存在的III类几丁质酶同源物表现为一种短暂的营养贮藏蛋白,很可能作为合成成熟相关蛋白的氨基酸的重要来源。

The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins.

作者信息

Peumans Willy J, Proost Paul, Swennen Rony L, Van Damme Els J M

机构信息

Laboratory for Phytopathology and Plant Protection, Catholic University Leuven, 3001 Leuven, Belgium.

出版信息

Plant Physiol. 2002 Oct;130(2):1063-72. doi: 10.1104/pp.006551.

Abstract

Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a beta-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas.

摘要

对蛋白质含量和组成的分析揭示了香蕉(芭蕉属)果实原位形成/成熟过程中基因表达的显著变化。香蕉总蛋白含量在最初60至70天内迅速增加,但在果实形成/成熟的其余阶段保持恒定。在蛋白质快速积累阶段,III类几丁质酶的一种无活性同源物占总蛋白的40%(w/v)。随着净蛋白质积累的停止,几丁质酶相关蛋白(CRP)逐渐减少,电泳图谱中出现了几种新蛋白质。因此,CRP表现为一种果实特异性营养贮藏蛋白,在果实早期形成过程中积累,并作为成熟相关蛋白合成的氨基酸来源。对单个蛋白质的分析表明,类甜蛋白、β-1,3-葡聚糖酶、I类几丁质酶和甘露糖结合凝集素是最丰富的成熟相关蛋白。由于在过早采收的香蕉成熟过程中,发生的变化与原位成熟香蕉相似,未成熟果实中存在的CRP是成熟相关蛋白准正常合成的充足氨基酸来源。然而,很明显,CRP向成熟相关蛋白的转化以加速速率发生,尤其是当乙烯诱导呼吸跃变成熟时。本报告还讨论了主要香蕉过敏原的积累以及用于转基因香蕉疫苗生产的合适启动子的鉴定。

相似文献

2
Banana MaSPL16 Modulates Carotenoid Biosynthesis during Fruit Ripening through Activating the Transcription of Lycopene β-Cyclase Genes.
J Agric Food Chem. 2020 Feb 5;68(5):1286-1296. doi: 10.1021/acs.jafc.9b07134. Epub 2020 Jan 24.
3
A ripening-induced transcription factor MaBSD1 interacts with promoters of MaEXP1/2 from banana fruit.
Plant Cell Rep. 2014 Nov;33(11):1913-20. doi: 10.1007/s00299-014-1668-6. Epub 2014 Aug 6.
5
Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.
Plant Cell Rep. 2009 Jan;28(1):103-11. doi: 10.1007/s00299-008-0613-y. Epub 2008 Sep 24.
6
EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine).
Physiol Plant. 2008 Jun;133(2):435-48. doi: 10.1111/j.1399-3054.2008.01083.x. Epub 2008 Mar 11.
7
Expression profiles of a MhCTR1 gene in relation to banana fruit ripening.
Plant Physiol Biochem. 2012 Jul;56:47-55. doi: 10.1016/j.plaphy.2012.04.001. Epub 2012 Apr 20.
9
Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality.
J Agric Food Chem. 2017 Nov 22;65(46):9987-9994. doi: 10.1021/acs.jafc.7b03354. Epub 2017 Nov 8.

引用本文的文献

1
4
Genome-wide identification of Hami melon miRNAs with putative roles during fruit development.
PLoS One. 2017 Jul 24;12(7):e0180600. doi: 10.1371/journal.pone.0180600. eCollection 2017.
5
Expression analysis of chitinase upon challenge inoculation to wounding and defense inducers in .
Biotechnol Rep (Amst). 2017 Jan 5;13:72-79. doi: 10.1016/j.btre.2017.01.001. eCollection 2017 Mar.
6
Protein Dynamics in the Plant Extracellular Space.
Proteomes. 2016 Jul 13;4(3):22. doi: 10.3390/proteomes4030022.
8
Molecular characterization of recombinant mus a 5 allergen from banana fruit.
Mol Biotechnol. 2014 Jun;56(6):498-506. doi: 10.1007/s12033-013-9719-8.
9
Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight.
Plant Cell Rep. 2007 Jun;26(6):791-804. doi: 10.1007/s00299-006-0292-5. Epub 2007 Jan 13.
10
A novel family of lectins evolutionarily related to class V chitinases: an example of neofunctionalization in legumes.
Plant Physiol. 2007 Jun;144(2):662-72. doi: 10.1104/pp.106.087981. Epub 2006 Nov 10.

本文引用的文献

1
Molecular cloning and characterisation of banana fruit polyphenol oxidase.
Planta. 2001 Sep;213(5):748-57. doi: 10.1007/s004250100553.
2
MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING.
Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:725-749. doi: 10.1146/annurev.arplant.52.1.725.
6
Ethylene: a gaseous signal molecule in plants.
Annu Rev Cell Dev Biol. 2000;16:1-18. doi: 10.1146/annurev.cellbio.16.1.1.
7
Fruit-specific lectins from banana and plantain.
Planta. 2000 Sep;211(4):546-54. doi: 10.1007/s004250000307.
9
Molecular and biochemical classification of plant-derived food allergens.
J Allergy Clin Immunol. 2000 Jul;106(1 Pt 1):27-36. doi: 10.1067/mai.2000.106929.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验