Suppr超能文献

Calculation of rotational setup error using the real-time tracking radiation therapy (RTRT) system and its application to the treatment of spinal schwannoma.

作者信息

Onimaru Rikiya, Shirato Hiroki, Aoyama Hidefumi, Kitakura Kei, Seki Toshitaka, Hida Kazutoshi, Fujita Katsuhisa, Kagei Kenji, Nishioka Takeshi, Kunieda Tatsuya, Iwasaki Yoshinobu, Miyasaka Kazuo

机构信息

Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo, Japan.

出版信息

Int J Radiat Oncol Biol Phys. 2002 Nov 1;54(3):939-47. doi: 10.1016/s0360-3016(02)03014-6.

Abstract

PURPOSE

The efficacy of a prototypic fluoroscopic real-time tracking radiation therapy (RTRT) system using three gold markers (2 mm in diameter) for estimating translational error, rotational setup error, and the dose to normal structures was tested in 5 patients with spinal schwannoma and a phantom.

METHODS AND MATERIALS

Translational error was calculated by comparing the actual position of the marker closest to the tumor to its planned position, and the rotational setup error was calculated using the three markers around the target. Theoretically, the actual coordinates can be adjusted to the planning coordinates by sequential rotation of gamma degrees around the z axis, beta degrees around the y axis, and alpha degrees around the x axis, in this order. We measured the accuracy of the rotational calculation using a phantom. Five patients with spinal schwannoma located at a minimum of 1-5 mm from the spinal cord were treated with RTRT. Three markers were inserted percutaneously into the paravertebral deep muscle in 3 patients and surgically into two consecutive vertebral bones in two other patients.

RESULTS

In the phantom study, the discrepancies between the actual and calculated rotational error were -0.1 +/- 0.5 degrees. The random error of rotation was 5.9, 4.6, and 3.1 degrees for alpha, beta, and gamma, respectively. The systematic error was 7.1, 6.6, and 3.0 degrees for alpha, beta, and gamma, respectively. The mean rotational setup error (0.2 +/- 2.2, -1.3 +/- 2.9, and -1.3 +/- 1.7 degrees for alpha, beta, and gamma, respectively) in 2 patients for whom surgical marker implantation was used was significantly smaller than that in 3 patients for whom percutaneous insertion was used (6.0 +/- 8.2, 2.7 +/- 5.9, and -2.1 +/- 4.6 degrees for alpha, beta, and gamma). Random translational setup error was significantly reduced by the RTRT setup (p < 0.0001). Systematic setup error was significantly reduced by the RTRT setup only in patients who received surgical implantation of the marker (p < 0.0001). The maximum dose to the spinal cord was estimated to be 40.6-50.3 Gy after consideration of the rotational setup error, vs. a planned maximum dose of 22.4-51.6 Gy.

CONCLUSION

The RTRT system employing three internal fiducial markers is useful to reduce translational setup error and to estimate the dose to the normal structures in consideration of the rotational setup error. Surgical implantation of the marker to the vertebral bone was shown to be sufficiently rigid for the calculation of the rotational setup error. Fractionated radiotherapy for spinal schwannoma using the RTRT system may well be an alternative or supplement to surgical treatment.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验