Shirato Hiroki, Oita Masataka, Fujita Katsuhisa, Shimizu Shinichi, Onimaru Rikiya, Uegaki Shinji, Watanabe Yoshiharu, Kato Norio, Miyasaka Kazuo
Department of Radiology, Hokkaido University School of Medicine, Sapporo, Japan.
Int J Radiat Oncol Biol Phys. 2004 Oct 1;60(2):607-12. doi: 10.1016/j.ijrobp.2004.05.042.
To test the accuracy of a system for correcting for the rotational error of the clinical target volume (CTV) without having to reposition the patient using three fiducial markers and two orthogonal fluoroscopic images. We call this system "three-dimensional conformal setup" (3D-CSU).
Three 2.0-mm gold markers are inserted into or adjacent to the CTV. On the treatment couch, the actual positions of the three markers are calculated based on two orthogonal fluoroscopies crossing at the isocenter of the linear accelerator. Discrepancy of the actual coordinates of gravity center of three markers from its planned coordinates is calculated. Translational setup error is corrected by adjustment of the treatment couch. The rotation angles (alpha, beta, gamma) of the coordinates of the actual CTV relative to the planned CTV are calculated around the lateral (x), craniocaudal (y), and anteroposterior (z) axes of the planned CTV. The angles of the gantry head, collimator, and treatment couch of the linear accelerator are adjusted according to the rotation of the actual coordinates of the tumor in relation to the planned coordinates. We have measured the accuracy of 3D-CSU using a static cubic phantom.
The gravity center of the phantom was corrected within 0.9 +/- 0.3 mm (mean +/- SD), 0.4 +/- 0.2 mm, and 0.6 +/- 0.2 mm for the rotation of the phantom from 0-30 degrees around the x, y, and z axes, respectively, every 5 degrees. Dose distribution was shown to be consistent with the planned dose distribution every 10 degrees of the rotation from 0-30 degrees. The mean rotational error after 3D-CSU was -0.4 +/- 0.4 (mean +/- SD), -0.2 +/- 0.4, and 0.0 +/- 0.5 degrees around the x, y, and z axis, respectively, for the rotation from 0-90 degrees.
Phantom studies showed that 3D-CSU is useful for performing rotational correction of the target volume without correcting the position of the patient on the treatment couch. The 3D-CSU will be clinically useful for tumors in structures such as paraspinal diseases and prostate cancers not subject to large internal organ motion.
测试一种无需重新安置患者,利用三个基准标记和两幅正交荧光透视图像校正临床靶区(CTV)旋转误差的系统的准确性。我们将该系统称为“三维适形设置”(3D-CSU)。
将三个2.0毫米的金标记物插入到CTV内或其附近。在治疗床上,基于在直线加速器等中心交叉的两幅正交荧光透视图像计算三个标记物的实际位置。计算三个标记物重心的实际坐标与其计划坐标的差异。通过调整治疗床校正平移设置误差。围绕计划CTV的横向(x)、头脚方向(y)和前后方向(z)轴,计算实际CTV坐标相对于计划CTV坐标的旋转角度(α、β、γ)。根据肿瘤实际坐标相对于计划坐标的旋转情况,调整直线加速器的机架头、准直器和治疗床的角度。我们使用静态立方体模体测量了3D-CSU的准确性。
对于模体围绕x、y和z轴每5度从0至30度的旋转,模体重心分别在0.9±0.3毫米(均值±标准差)、0.4±0.2毫米和0.6±0.2毫米内得到校正。对于从0至30度每10度的旋转,剂量分布显示与计划剂量分布一致。对于从0至90度的旋转,3D-CSU后围绕x、y和z轴的平均旋转误差分别为-0.4±0.4(均值±标准差)、-0.2±0.4和0.0±0.5度。
模体研究表明,3D-CSU可用于在不校正患者在治疗床上位置的情况下对靶区进行旋转校正。3D-CSU在临床上对于诸如脊柱旁疾病和前列腺癌等不受大的内部器官运动影响的结构中的肿瘤将是有用的。