Suppr超能文献

Lysine 213 and histidine 233 participate in Mn(II) binding and catalysis in Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.

作者信息

Krautwurst Hans, Roschzttardtz Hannetz, Bazaes Sergio, González-Nilo Fernando D, Nowak Thomas, Cardemil Emilio

机构信息

Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 33, Chile.

出版信息

Biochemistry. 2002 Oct 22;41(42):12763-70. doi: 10.1021/bi026241w.

Abstract

Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase catalyses the reversible metal-dependent formation of oxaloacetate and ATP from PEP, ADP, and CO2 and plays a key role in gluconeogenesis. This enzyme also has oxaloacetate decarboxylase and pyruvate kinase-like activities. Mutations of PEP carboxykinase have been constructed where the residues Lys213 and His233, two residues of the putative Mn2+ binding site of the enzyme, were altered. Replacement of these residues by Arg and by Gln, respectively, generated enzymes with 1.9 and 2.8 kcal/mol lower Mn2+ binding affinity. Lower PEP binding affinity was inferred for the mutated enzymes from the protection effect of PEP against urea denaturation. Kinetic studies of the altered enzymes show at least a 5000-fold reduction in V(max) for the primary reaction relative to that for the wild-type enzyme. V(max) values for the oxaloacetate decarboxylase and pyruvate kinase-like activities of PEP carboxykinase were affected to a much lesser extent in the mutated enzymes. The mutated enzymes show a decreased steady-state affinity for Mn2+ and PEP. The results are consistent with Lys213 and His233 being at the Mn2+ binding site of S. cerevisiae PEP carboxykinase and the Mn2+ affecting the PEP interaction. The different effects of mutations in V(max) for the main reaction and the secondary activities suggest different rate-limiting steps for these reactions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验