Zompatori M, Fasano L, Mazzoli M, Sciascia N, Cavina M, Pacilli A M G, Paioli D
Radiologia Zompatori, Policlinico S. Orsola-Malpighi, Bologna, Italy.
Radiol Med. 2002 Jul-Aug;104(1-2):13-24.
To evaluate the diagnostic accuracy and clinical acceptability of low-dose spiral CT for determining pulmonary volumes and emphysema extension in patients with pulmonary emphysema, in comparison with studies based on spiral CT at conventional dose.
We prospectively evaluated eighteen patients, current or former smokers, with a clinical diagnosis of chronic obstructive pulmonary disease. All the patients underwent: HRCT with three scans at predetermined levels; quantitative spiral CT, with two inspiratory scans, one conventional scan at 240 mA, and the second one a low-dose scan at 80 mA. We used the following parameters: 120 kV, rotation time 0.8", scan time less than 20" (single inspiratory breath-hold), layer thickness 7.5 mm, pitch 6 (high speed), interpolation algorithm at 180 degrees. A 3D reconstruction was performed, with segmentation of the lungs and automatic quantification of pulmonary volumes. We compared the volumes of absolute and percent emphysema and the ratings of the dose delivered to the patient (CTDIw and DLP) obtained with the two spiral CT scans with each other and with the respiratory function tests.
The average total lung capacity (TLC) obtained by conventional-dose spiral CT (CTs1) was 6889.4 cc (SD +/-1813.2), and the capacity with low-dose spiral CT (CTs2) was 6929.4 cc (SD +/-1811.6). The percentage of emphysema was 39.7% (range: 2.2-63.5%; SD: +/-19.9) for the CTs1 and 41.1% (range: 2.1-66.4%; SD: +/-20). The CTDIw corresponding to CTs1 was 12.2 mGy (range: 11.9-16.4; SD: +/-1), the one corresponding to CTs2, 3.6 mGy (range: 3.6-4.9; SD: +/-0.3). The DLP corresponding to CTs1 was 391.7 mGy x cm (range: 333.3-518.9; SD: +/-46.7), the one corresponding to CTs2 was 117.8 mGy x cm (range: 100.3-156; SD: +/-14). As for the respiratory function tests, the total lung capacity (TLC) obtained by body plethysmography was 7061 cc (SD: +/-2029.7); the percent TLC was 115.9 (range: 66-165; SD: +/-27.6), the forced expiratory volume at one second (FEV1%, percentage of predicted value) was 46.7% (range: 17-123; SD: +/-27.3), residual volume (RV%) as a percentage of predicted value was 186.3 (range: 84-359; SD: +/-80.7), the Tiffeneau index (TI) was 46% (range: 25-71; SD: +/-15.7). We observed a very significant correlation between radiological and functional TLC for both CT methods. The percentage scores for emphysema obtained with the two methods correlated significantly with the functional indexes. The pixel index of CTs1 correlated with TLC% (r=0.87; p<0.0001), FEV1% (r=-0.53; p<0.02), RV% (r=0.76; p=0.004), TI (r=-0.79; p=0.0001). The pixel index of CTs2 correlated with TLC% (r=0.87; p<0.0001), FEV1% (r=-0.56; p=0.01), RV% (r=0.78; p=0.003), TI (r=-0.8; p=0.0001). The adoption of the method with low tube current entailed a highly significant reduction in the estimated dose delivered to patients (CTDIw and DLP) with r=0.9 and p < 0.0001.
Quantitative low-dose spiral CT is a very good method to quantify pulmonary volumes and calculate the extension of the anatomic emphysema. The reduction of mA from 240 to 80 lowers the estimated dose by 30%, without compromising the accuracy of the results. Our study achieved a highly significant correlation between the results obtained with the two spiral CT techniques and between these results and the respiratory function tests. In clinical practice, the easiest way to reduce the dose in spiral CT of the lung is to reduce the tube current. The low-dose method allows a significant reduction in radiation exposure. Further studies are required to establish to what extent the dose can be reduced without increasing in quantum noise and thereby compromising the quality of the study.
与基于传统剂量螺旋CT的研究相比,评估低剂量螺旋CT在测定肺气肿患者肺容积和肺气肿范围方面的诊断准确性及临床可接受性。
我们前瞻性地评估了18例临床诊断为慢性阻塞性肺疾病的现吸烟者或既往吸烟者。所有患者均接受:在预定层面进行三次扫描的高分辨率CT(HRCT);定量螺旋CT,包括两次吸气扫描,一次是240 mA的传统扫描,另一次是80 mA的低剂量扫描。我们采用以下参数:120 kV,旋转时间0.8秒,扫描时间小于20秒(单次吸气屏气),层厚7.5 mm,螺距6(高速),180度插值算法。进行了三维重建,对肺进行分割并自动定量肺容积。我们比较了两次螺旋CT扫描获得的绝对肺气肿容积和百分比肺气肿容积以及给予患者的剂量(CTDIw和DLP)评级,并与呼吸功能测试结果进行比较。
传统剂量螺旋CT(CTs1)测得的平均肺总量(TLC)为6889.4 cc(标准差±1813.2),低剂量螺旋CT(CTs2)测得的为6929.4 cc(标准差±1811.6)。CTs1的肺气肿百分比为39.7%(范围:2.2 - 63.5%;标准差:±19.9),CTs2的为41.1%(范围:2.1 - 66.4%;标准差:±20)。与CTs1对应的CTDIw为12.2 mGy(范围:11.9 - 16.4;标准差:±1),与CTs2对应的为3.6 mGy(范围:3.6 - 4.9;标准差:±0.3)。与CTs1对应的DLP为391.7 mGy×cm(范围:333.3 - 518.9;标准差:±46.7),与CTs2对应的为117.8 mGy×cm(范围:100.3 - 156;标准差:±14)。至于呼吸功能测试,体容积描记法测得的肺总量(TLC)为7061 cc(标准差:±2029.7);TLC百分比为115.9(范围:66 - 165;标准差:±27.6),一秒用力呼气容积(FEV1%,预测值百分比)为46.7%(范围:17 - 123;标准差:±27.3),残气量(RV%)占预测值的百分比为186.3(范围:84 - 359;标准差:±80.7),蒂芬诺指数(TI)为46%(范围:25 - 71;标准差:±15.7)。我们观察到两种CT方法的放射学和功能TLC之间存在非常显著的相关性。两种方法获得的肺气肿百分比评分与功能指标显著相关。CTs1的像素指数与TLC%(r = 0.87;p < 0.0001)、FEV1%(r = -0.53;p < 0.02)、RV%(r = 0.76;p = 0.004)、TI(r = -0.79;p = 0.0001)相关。CTs2的像素指数与TLC%(r = 0.87;p < 0.0001)、FEV1%(r = -0.56;p = 0.01)、RV%(r = 0.78;p = 0.003)、TI(r = -0.8;p = 0.0001)相关。采用低管电流方法使估计给予患者的剂量(CTDIw和DLP)显著降低,r = 0.9且p < 0.0001。
定量低剂量螺旋CT是定量肺容积和计算解剖性肺气肿范围的非常好的方法。将毫安数从240降至80可使估计剂量降低30%,而不影响结果的准确性。我们的研究在两种螺旋CT技术获得的结果之间以及这些结果与呼吸功能测试之间取得了非常显著的相关性。在临床实践中,降低肺部螺旋CT剂量的最简单方法是降低管电流。低剂量方法可显著减少辐射暴露。需要进一步研究以确定在不增加量子噪声从而不影响研究质量的情况下剂量能降低到何种程度。