Suppr超能文献

重温丹尼尔·伯努利的流行病学模型。

Daniel Bernoulli's epidemiological model revisited.

作者信息

Dietz Klaus, Heesterbeek J A P

机构信息

Department of Medical Biometry, University of Tübingen, Westbahnhofstr. 55, 72070 Tübingen, Germany.

出版信息

Math Biosci. 2002 Nov-Dec;180:1-21. doi: 10.1016/s0025-5564(02)00122-0.

Abstract

The seminal paper by Daniel Bernoulli published in 1766 is put into a new perspective. After a short account of smallpox inoculation and of Bernoulli's life, the motivation for that paper and its impact are described. It determines the age-specific equilibrium prevalence of immune individuals in an endemic potentially lethal infectious disease. The gain in life expectancy after elimination of this cause of death can be explicitly expressed in terms of the case fatality and the endemic prevalence of susceptibles. D'Alembert developed in 1761 an alternative method for dealing with competing risks of death, which is also applicable to non-infectious diseases. Bernoulli's formula for the endemic prevalence of susceptibles has so far escaped attention. It involves the lifetime risk of the infection, the force of infection and the life expectancy at birth. A new formula for the basic reproduction number is derived which involves the average force of infection, the average case fatality and the life expectancy at the time of infection. One can use this estimate to assess the gain in life expectancy if only a fraction of the population is immunized.

摘要

丹尼尔·伯努利1766年发表的开创性论文被置于一个新的视角。在简要介绍天花接种和伯努利的生平之后,描述了该论文的动机及其影响。它确定了在一种地方性潜在致命传染病中免疫个体的年龄特异性平衡患病率。消除这种死亡原因后预期寿命的增加可以根据病死率和易感染者的地方性患病率明确表示出来。达朗贝尔在1761年开发了一种处理死亡竞争风险的替代方法,该方法也适用于非传染性疾病。伯努利关于易感染者地方性患病率的公式迄今为止一直未受到关注。它涉及感染的终生风险、感染力和出生时的预期寿命。推导了一个关于基本再生数的新公式,该公式涉及平均感染力、平均病死率和感染时的预期寿命。如果只有一部分人口接种疫苗,人们可以使用这个估计值来评估预期寿命的增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验