Suppr超能文献

具有分数阶导数和深度神经网络的脊髓灰质炎动力学

Poliomyelitis dynamics with fractional order derivatives and deep neural networks.

作者信息

Al-Quran Ashraf, Shafqat Ramsha, Alsaadi Ateq, Djaouti Abdelhamid Mohammed

机构信息

Department of Mathematics and Statistics, King Faisal University, 31982, Hofuf, Saudi Arabia.

Department of Mathematics and Statistics, The University of Lahore, Sargodha, 40100, Pakistan.

出版信息

Sci Rep. 2025 Aug 31;15(1):32023. doi: 10.1038/s41598-025-15195-2.

Abstract

This paper presents a comprehensive study of poliomyelitis transmission dynamics using two fractional-order models that incorporate the Atangana--Baleanu derivatives in the Caputo sense (ABC). The model includes critical epidemiological features, including vaccination and a post-paralytic population class. By utilizing the Mittag-Leffler kernel, the fractional framework captures memory and hereditary properties in disease progression. The existence and uniqueness of the model's solution are established using fixed-point theory. To assess the model's robustness, Ulam-Hyers stability analysis is conducted through nonlinear techniques. For numerical approximation, the iterative Adams-Bashforth scheme tailored for fractional orders is employed. Simulations are performed for a range of fractional orders and control strategies. The results indicate that all compartments achieve convergence and dynamic stability over time, with lower fractional orders exhibiting faster stabilization. These findings underscore the effectiveness of fractional modeling in capturing the complex behaviors of diseases. To enhance predictive capabilities, deep neural network (DNN) techniques are integrated into the framework. The dataset is partitioned into training, testing, and validation sets. The DNN is then used for classification, forecasting, and data-driven simulation of disease dynamics. The DNN-based results closely align with numerical simulations, demonstrating high accuracy and validating the proposed hybrid modeling approach. This study presents a novel integration of fractional-order modeling and machine learning for infectious disease analysis, providing a powerful tool for understanding and predicting poliomyelitis spread under vaccination and post-paralytic effects.

摘要

本文使用两个包含Caputo意义下的阿坦加纳-巴莱努导数(ABC)的分数阶模型,对脊髓灰质炎传播动力学进行了全面研究。该模型包括关键的流行病学特征,如疫苗接种和麻痹后人群类别。通过利用米塔格-莱夫勒核,分数阶框架捕捉了疾病进展中的记忆和遗传特性。使用不动点理论建立了模型解的存在性和唯一性。为了评估模型的鲁棒性,通过非线性技术进行了乌拉姆-海尔斯稳定性分析。对于数值逼近,采用了为分数阶量身定制的迭代亚当斯-巴什福斯格式。针对一系列分数阶和控制策略进行了模拟。结果表明,所有区室随时间实现收敛和动态稳定,较低的分数阶表现出更快的稳定。这些发现强调了分数阶建模在捕捉疾病复杂行为方面的有效性。为了提高预测能力,将深度神经网络(DNN)技术集成到该框架中。数据集被划分为训练集、测试集和验证集。然后将DNN用于疾病动态的分类、预测和数据驱动模拟。基于DNN的结果与数值模拟密切吻合,显示出高精度并验证了所提出的混合建模方法。本研究提出了一种用于传染病分析的分数阶建模与机器学习的新型集成方法,为理解和预测疫苗接种及麻痹后效应下脊髓灰质炎的传播提供了一个有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06b7/12399770/4e61284fa1be/41598_2025_15195_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验