Sahin-Tóth Miklós, Gunawan Paula, Lawrence Mary C, Toyokuni Tatsushi, Kaback H Ronald
Howard Hughes Medical Institute, Department of Physiology, Molecular Biology Institute, University of California, Los Angeles, California 90095-1662, USA.
Biochemistry. 2002 Oct 29;41(43):13039-45. doi: 10.1021/bi0203076.
Binding of alpha- and beta-D-galactopyranosides with different hydrophobic aglycons was compared using substrate protection against N-ethylmaleimide alkylation of single-Cys148 lactose permease. As demonstrated previously, methyl- or allyl-substituted alpha-D-galactopyranosides exhibit a 60-fold increase in binding affinity (K(D) = 0.5 mM), relative to galactose (K(D) = 30 mM), while methyl beta-D-galactopyranoside binds only 3-fold better. In the present study, galactopyranosides with cyclohexyl or phenyl substitutions, both in alpha and beta anomeric configurations, were synthesized. Surprisingly, relative to methyl alpha-D-galactopyranoside, binding of cyclohexyl alpha-D-galactopyranoside to lactose permease is essentially unchanged (K(D) = 0.4 mM), and phenyl alpha-D-galactopyranoside exhibits only a modest increase in binding affinity (K(D) = 0.15 mM). Nitro- or methyl-substituted phenyl alpha-D-galactopyranosides bind with significantly higher affinities (K(D) = 0.014-0.067 mM), and the strongest binding is observed with analogues containing para substituents. In contrast, D-galactopyranosides with a variety of large hydrophobic substituents (isopropyl, cyclohexyl, phenyl, o- or p-nitrophenyl) in beta anomeric configuration exhibit uniformly weak binding (K(D) = 1.0-2.3 mM). The results confirm and extend previous observations that hydrophobic aglycons of D-galactopyranosides increase binding affinity, with a clear predilection toward alpha-substituted sugars. In addition, the data suggest that the primary interaction between the permease and hydrophobic aglycons is directed toward the carbon atom bonded to the anomeric oxygen. The different positioning of this carbon atom in alpha- or beta-D-galactopyranosides thus may provide a rationale for the characteristic binding preference of the permease for alpha anomers.
使用底物保护法来防止单半胱氨酸148乳糖通透酶被N - 乙基马来酰亚胺烷基化,以此比较具有不同疏水苷元的α - 和β - D - 吡喃半乳糖苷的结合情况。如先前所示,相对于半乳糖(K(D) = 30 mM),甲基或烯丙基取代的α - D - 吡喃半乳糖苷的结合亲和力增加了60倍(K(D) = 0.5 mM),而甲基β - D - 吡喃半乳糖苷的结合能力仅提高了3倍。在本研究中,合成了α和β异头构型中带有环己基或苯基取代基的吡喃半乳糖苷。令人惊讶的是,相对于甲基α - D - 吡喃半乳糖苷,环己基α - D - 吡喃半乳糖苷与乳糖通透酶的结合基本不变(K(D) = 0.4 mM),而苯基α - D - 吡喃半乳糖苷的结合亲和力仅适度增加(K(D) = 0.15 mM)。硝基或甲基取代的苯基α - D - 吡喃半乳糖苷具有显著更高的亲和力(K(D) = 0.014 - 0.067 mM),并且在含有对位取代基的类似物中观察到最强的结合。相比之下,β异头构型中带有各种大的疏水取代基(异丙基、环己基、苯基、邻硝基或对硝基苯基)的D - 吡喃半乳糖苷表现出一致的弱结合(K(D) = 1.0 - 2.3 mM)。结果证实并扩展了先前的观察结果,即D - 吡喃半乳糖苷的疏水苷元增加了结合亲和力,并且明显倾向于α取代的糖。此外,数据表明通透酶与疏水苷元之间的主要相互作用指向与异头氧键合的碳原子。因此,该碳原子在α - 或β - D - 吡喃半乳糖苷中的不同位置可能为通透酶对α异头物的特征性结合偏好提供了一个基本原理。