The time course of creep in the taenia coli of the guinea pig was recorded during 2000 sec (33 min 20 sec) in the relaxed (Ca2+-free bath solution with verapamil) and contracted (KCl or K2SO4 depolarized) states. 2. The variations in initial length before loading (l0), immediate elastic extension after loading (lE), and creep (N) were standardized with respoect to volume (cm/cm3) and compared among the different states. 3. Immediate elastic extension (lE) and particularly creep after 2000 sec (N2000) are minimal in the relaxed and maximal in the K2SO4-contracted state. The values in the KCl-contracted state are probably affected by intracellular swelling. Statistically, there is a significant difference between the overall length (l0 + lE + N2000) in the relaxed and in the K2SO4-contracted state when creep ends. 4. The hyperbolic relation of N to dN/dt representing the time course of creep mentioned in an earlier paper is reconfirmed for the relaxed as well as for the contracted state. 5. The parameters of the equation giving this relation are calculated from the experimental data. They characterize elastic properties and inner friction during creep. It is shown that the parameters of inner friction diminish more than those characterizing the elastic properties if the preparation is changed from the relaxed into the contracted state by K2SO4-depolarization. 6. In the discussion further evidence is given that not only changes in the diameter of the preparation but also changes of the intracellular elements must be responsible for the altered time course of creep during contraction.