Suppr超能文献

由双链断裂引发的噬菌体T4的定向基因重组。

Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.

作者信息

Shcherbakov Victor, Granovsky Igor, Plugina Lidiya, Shcherbakova Tamara, Sizova Svetlana, Pyatkov Konstantin, Shlyapnikov Michael, Shubina Olga

机构信息

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432 Russia.

出版信息

Genetics. 2002 Oct;162(2):543-56. doi: 10.1093/genetics/162.2.543.

Abstract

A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed.

摘要

基于噬菌体T4的ets1 segCDelta菌株,开发了一种用于在体内研究双链断裂(DSB)诱导的基因重组的模型系统。ets1是噬菌体T2L的一个66bp DNA片段,包含T4 SegC位点特异性内切酶的切割位点,被插入到T4 rIIB基因的近端部分。在segC(+)条件下,ets1表现为一个重组热点。ets1与位于其左侧和右侧的rII标记进行杂交,得到了相似的结果,从而证明了断裂染色体的任何一部分都能平等且对称地启动重组。在一系列与其他rIIB和rIIA突变体(均为segC(+))进行的双因子和三因子杂交中,研究了频率/距离关系,这些突变体与ets1相隔12 - 2100bp。根据修改后的剪接/补丁耦合模型,观察到的关系很容易解释。讨论了这种局部或集中重组相对于沿染色体分布的重组作为研究T4体内重组 - 复制途径模型的优势。

相似文献

1
Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.
Genetics. 2002 Oct;162(2):543-56. doi: 10.1093/genetics/162.2.543.
2
Double-strand break repair in bacteriophage T4: recombination effects of 3'-5' exonuclease mutations.
Genetics. 2006 Dec;174(4):1729-36. doi: 10.1534/genetics.106.063891. Epub 2006 Oct 8.
4
Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.
DNA Repair (Amst). 2014 Sep;21:120-30. doi: 10.1016/j.dnarep.2014.04.009. Epub 2014 May 5.
6
On the mutagenicity of homologous recombination and double-strand break repair in bacteriophage.
DNA Repair (Amst). 2011 Jan 2;10(1):16-23. doi: 10.1016/j.dnarep.2010.09.006. Epub 2010 Oct 15.
8
Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4.
J Bacteriol. 1995 Dec;177(23):6844-53. doi: 10.1128/jb.177.23.6844-6853.1995.
9
Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.
DNA Repair (Amst). 2008 Jun 1;7(6):890-901. doi: 10.1016/j.dnarep.2008.02.012. Epub 2008 Apr 8.
10
Endonuclease VII is a key component of the mismatch repair mechanism in bacteriophage T4.
DNA Repair (Amst). 2011 Apr 3;10(4):356-62. doi: 10.1016/j.dnarep.2010.12.006. Epub 2011 Jan 14.

引用本文的文献

2
Mobile DNA elements in T4 and related phages.
Virol J. 2010 Oct 28;7:290. doi: 10.1186/1743-422X-7-290.
3
A likely pathway for formation of mobile group I introns.
Curr Biol. 2009 Feb 10;19(3):223-8. doi: 10.1016/j.cub.2009.01.033.
4
Double-strand break repair in bacteriophage T4: recombination effects of 3'-5' exonuclease mutations.
Genetics. 2006 Dec;174(4):1729-36. doi: 10.1534/genetics.106.063891. Epub 2006 Oct 8.
5
Bacteriophage T4 genome.
Microbiol Mol Biol Rev. 2003 Mar;67(1):86-156, table of contents. doi: 10.1128/MMBR.67.1.86-156.2003.

本文引用的文献

1
Growth and Recombination in Bacterial Viruses.
Genetics. 1953 Sep;38(5):500-11. doi: 10.1093/genetics/38.5.500.
2
Recombinational DNA repair of damaged replication forks in Escherichia coli: questions.
Annu Rev Genet. 2001;35:53-82. doi: 10.1146/annurev.genet.35.102401.090016.
3
Chromosomal stability and the DNA double-stranded break connection.
Nat Rev Genet. 2001 Mar;2(3):196-206. doi: 10.1038/35056049.
4
Recombination: a frank view of exchanges and vice versa.
Curr Opin Cell Biol. 2000 Jun;12(3):286-92. doi: 10.1016/s0955-0674(00)00090-9.
5
Links between replication, recombination and genome instability in eukaryotes.
Trends Biochem Sci. 2000 Apr;25(4):196-200. doi: 10.1016/s0968-0004(00)01568-1.
6
Recombination-dependent DNA replication in phage T4.
Trends Biochem Sci. 2000 Apr;25(4):165-73. doi: 10.1016/s0968-0004(00)01559-0.
7
Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda.
Microbiol Mol Biol Rev. 1999 Dec;63(4):751-813, table of contents. doi: 10.1128/MMBR.63.4.751-813.1999.
8
Role of exonucleolytic degradation in group I intron homing in phage T4.
Genetics. 1999 Dec;153(4):1501-12. doi: 10.1093/genetics/153.4.1501.
9
Rad51/RecA protein families and the associated proteins in eukaryotes.
Mutat Res. 1999 Sep 13;435(1):13-21. doi: 10.1016/s0921-8777(99)00033-6.
10
DNA recombination: the replication connection.
Trends Biochem Sci. 1999 Jul;24(7):271-5. doi: 10.1016/s0968-0004(99)01413-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验