Korotkova Natalia, Chistoserdova Ludmila, Lidstrom Mary E
Department of Chemical Engineering, University of Washington, Seattle 98195-1750, USA.
J Bacteriol. 2002 Nov;184(22):6174-81. doi: 10.1128/JB.184.22.6174-6181.2002.
Methylobacterium extorquens AM1, a serine cycle facultative methylotroph, accumulates poly-beta-hydroxybutyrate (PHB) as a carbon and energy reserve material during growth on both multicarbon- and single-carbon substrates. Recently, the identification and mutation of the genes involved in the biosynthesis and degradation of PHB have been described for this bacterium, demonstrating that two of the genes of the PHB cycle (phaA and phaB) are also involved in C(1) and C(2) metabolism, as part of a novel pathway for glyoxylate regeneration in the serine cycle (N. Korotkova and M. E. Lidstrom, J. Bacteriol. 183:1038-1046, 2001; N. Korotkova, L. Chistoserdova, V. Kuksa, and M. E. Lidstrom, J. Bacteriol. 184:1750-1758, 2002). In this work, three new genes involved in PHB biosynthesis in this bacterium have been investigated via mutation and phenotypic analysis: gap11, gap20, and phaR. We demonstrate that gap11 and gap20 encode two major granule-associated proteins (phasins) and that mutants with mutations in these genes are defective in PHB production and also in growth on C(2) compounds, while they show wild-type growth characteristics on C(1) or multicarbon compounds. The phaR mutant shows defects in both PHB accumulation and growth characteristics when grown on C(1) compounds and has defects in PHB accumulation but grows normally on C(3) and C(4) compounds, while both PHB accumulation and growth rate are at wild-type levels during growth on C(2) compounds. Our results suggest that this phenotype is due to altered fluxes of acetyl coenzyme A (CoA), a major intermediate in C(1), C(2), and heterotrophic metabolism in M. extorquens AM1, as well as the entry metabolite for the PHB cycle. Therefore, it seems likely that PhaR acts to control acetyl-CoA flux to PHB in this methylotrophic bacterium.
扭脱甲基杆菌AM1是一种丝氨酸循环兼性甲基营养菌,在多碳和单碳底物上生长时,会积累聚-β-羟基丁酸酯(PHB)作为碳和能量储备物质。最近,已经描述了该细菌中参与PHB生物合成和降解的基因的鉴定和突变情况,表明PHB循环的两个基因(phaA和phaB)也参与C₁和C₂代谢,作为丝氨酸循环中乙醛酸再生新途径的一部分(N. 科罗特科娃和M. E. 利德斯特伦,《细菌学杂志》183:1038 - 1046,2001;N. 科罗特科娃、L. 奇斯托瑟多娃、V. 库克萨和M. E. 利德斯特伦,《细菌学杂志》184:1750 - 1758,2002)。在这项工作中,通过突变和表型分析研究了该细菌中参与PHB生物合成的三个新基因:gap11、gap20和phaR。我们证明gap11和gap20编码两种主要的颗粒相关蛋白(聚羟基脂肪酸酯结合蛋白),这些基因发生突变的突变体在PHB产生以及在C₂化合物上的生长方面存在缺陷,而它们在C₁或多碳化合物上表现出野生型生长特征。phaR突变体在以C₁化合物为碳源生长时,在PHB积累和生长特性方面都存在缺陷,在PHB积累方面存在缺陷,但在C₃和C₄化合物上生长正常,而在以C₂化合物为碳源生长期间,PHB积累和生长速率都处于野生型水平。我们的结果表明,这种表型是由于乙酰辅酶A(CoA)通量的改变所致,乙酰辅酶A是扭脱甲基杆菌AM1中C₁、C₂和异养代谢的主要中间产物,也是PHB循环的进入代谢物。因此,PhaR似乎在这种甲基营养菌中起到控制乙酰辅酶A流向PHB的作用。