Suppr超能文献

甲基杆菌 AM1 利用二碳化合物生长时,乙醛酸的另一种代谢途径。

Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1.

机构信息

Department of Chemical Engineering, University of Washington, Seattle, WA 98195-2180, USA.

出版信息

J Bacteriol. 2010 Apr;192(7):1813-23. doi: 10.1128/JB.01166-09. Epub 2010 Jan 29.

Abstract

Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multicarbon compounds. Mutants defective in a pathway involved in converting acetyl-coenzyme A (CoA) to glyoxylate (the ethylmalonyl-CoA pathway) are unable to grow on both C(1) and C(2) compounds, showing that both modes of growth have this pathway in common. However, growth on C(2) compounds via the ethylmalonyl-CoA pathway should require glyoxylate consumption via malate synthase, but a mutant lacking malyl-CoA/beta-methylmalyl-CoA lyase activity (MclA1) that is assumed to be responsible for malate synthase activity still grows on C(2) compounds. Since glyoxylate is toxic to this bacterium, it seemed likely that a system is in place to keep it from accumulating. In this study, we have addressed this question and have shown by microarray analysis, mutant analysis, metabolite measurements, and (13)C-labeling experiments that M. extorquens AM1 contains an additional malyl-CoA/beta-methylmalyl-CoA lyase (MclA2) that appears to take part in glyoxylate metabolism during growth on C(2) compounds. In addition, an alternative pathway appears to be responsible for consuming part of the glyoxylate, converting it to glycine, methylene-H(4)F, and serine. Mutants lacking either pathway have a partial defect for growth on ethylamine, while mutants lacking both pathways are unable to grow appreciably on ethylamine. Our results suggest that the malate synthase reaction is a bottleneck for growth on C(2) compounds by this bacterium, which is partially alleviated by this alternative route for glyoxylate consumption. This strategy of multiple enzymes/pathways for the consumption of a toxic intermediate reflects the metabolic versatility of this facultative methylotroph and is a model for other metabolic networks involving high flux through toxic intermediates.

摘要

甲基杆菌(Methylobacterium extorquens AM1)是一种兼性甲基营养菌,能够利用单碳和多碳化合物生长。在涉及将乙酰辅酶 A(CoA)转化为乙醛酸(乙基丙二酰辅酶 A 途径)的途径中发生缺陷的突变体无法在 C(1)和 C(2)化合物上生长,这表明两种生长方式都有这个途径。然而,通过乙基丙二酰辅酶 A 途径在 C(2)化合物上的生长应该需要通过苹果酸合酶消耗乙醛酸,但一个缺乏顺乌头酸酶/β-甲基丙二酰辅酶 A 裂合酶活性(MclA1)的突变体,该酶被认为负责苹果酸合酶活性,仍然可以在 C(2)化合物上生长。由于乙醛酸对这种细菌有毒,因此很可能有一种系统可以防止其积累。在这项研究中,我们通过微阵列分析、突变体分析、代谢物测量和(13)C 标记实验解决了这个问题,并表明甲基杆菌(Methylobacterium extorquens AM1)含有一种额外的顺乌头酸酶/β-甲基丙二酰辅酶 A 裂合酶(MclA2),该酶在利用 C(2)化合物生长时似乎参与了乙醛酸代谢。此外,似乎有一种替代途径负责消耗部分乙醛酸,将其转化为甘氨酸、亚甲基-H(4)F 和丝氨酸。缺乏任何一种途径的突变体在乙基胺上的生长有部分缺陷,而缺乏两种途径的突变体则无法在乙基胺上显著生长。我们的结果表明,苹果酸合酶反应是该细菌利用 C(2)化合物生长的一个瓶颈,通过这种替代途径消耗乙醛酸可以部分缓解。这种针对有毒中间产物的多种酶/途径的策略反映了这种兼性甲基营养菌的代谢多功能性,是涉及高通量有毒中间产物的其他代谢网络的模型。

相似文献

1
Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1.
J Bacteriol. 2010 Apr;192(7):1813-23. doi: 10.1128/JB.01166-09. Epub 2010 Jan 29.
3
Ethylmalonyl coenzyme A mutase operates as a metabolic control point in Methylobacterium extorquens AM1.
J Bacteriol. 2015 Feb 15;197(4):727-35. doi: 10.1128/JB.02478-14. Epub 2014 Dec 1.
5
The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate.
J Biol Chem. 2012 Jan 2;287(1):757-766. doi: 10.1074/jbc.M111.305219. Epub 2011 Nov 21.
7
Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4846-51. doi: 10.1073/pnas.0810932106. Epub 2009 Mar 4.
9
Glyoxylate regeneration pathway in the methylotroph Methylobacterium extorquens AM1.
J Bacteriol. 2002 Mar;184(6):1750-8. doi: 10.1128/JB.184.6.1750-1758.2002.

引用本文的文献

1
A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid.
Microb Cell Fact. 2024 Dec 23;23(1):344. doi: 10.1186/s12934-024-02583-y.
4
Improvement of dicarboxylic acid production with Methylorubrum extorquens by reduction of product reuptake.
Appl Microbiol Biotechnol. 2022 Oct;106(19-20):6713-6731. doi: 10.1007/s00253-022-12161-0. Epub 2022 Sep 15.
5
Metabolic engineering of Methylobacterium extorquens AM1 for the production of butadiene precursor.
Microb Cell Fact. 2018 Dec 20;17(1):194. doi: 10.1186/s12934-018-1042-4.
9
Ethylmalonyl coenzyme A mutase operates as a metabolic control point in Methylobacterium extorquens AM1.
J Bacteriol. 2015 Feb 15;197(4):727-35. doi: 10.1128/JB.02478-14. Epub 2014 Dec 1.
10
Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production.
Biotechnol Biofuels. 2014 Oct 21;7(1):156. doi: 10.1186/s13068-014-0156-0. eCollection 2014.

本文引用的文献

1
(2S)-Methylsuccinyl-CoA dehydrogenase closes the ethylmalonyl-CoA pathway for acetyl-CoA assimilation.
Mol Microbiol. 2009 Sep;73(6):992-1008. doi: 10.1111/j.1365-2958.2009.06837.x. Epub 2009 Aug 23.
4
Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4846-51. doi: 10.1073/pnas.0810932106. Epub 2009 Mar 4.
5
Implementation of microarrays for Methylobacterium extorquens AM1.
OMICS. 2007 Winter;11(4):325-40. doi: 10.1089/omi.2007.0027.
7
Recent advancements in comprehensive two-dimensional separations with chemometrics.
J Chromatogr A. 2008 Mar 14;1184(1-2):341-52. doi: 10.1016/j.chroma.2007.07.059. Epub 2007 Jul 31.
8
Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10631-6. doi: 10.1073/pnas.0702791104. Epub 2007 Jun 4.
9
Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides.
Mol Microbiol. 2006 Jul;61(2):297-309. doi: 10.1111/j.1365-2958.2006.05238.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验