Suppr超能文献

植物乳杆菌中α-半乳糖苷酶melA基因座的特性分析。

Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum.

作者信息

Silvestroni Aurelio, Connes Cristelle, Sesma Fernando, De Giori Graciela Savoy, Piard Jean-Christophe

机构信息

Centro de Referencia para Lactobacillos (CERELA-CONICET), Chacabuco 145, 4000 Tucumán, Argentina. INRA-URLGA, Useful Bacterial Surface Proteins, 78352 Jouy-en-Josas, France.

出版信息

Appl Environ Microbiol. 2002 Nov;68(11):5464-71. doi: 10.1128/AEM.68.11.5464-5471.2002.

Abstract

Alpha-galactosides are abundant sugars in legumes such as soy. Because of the lack of alpha-galactosidase (alpha-Gal) in the digestive tract, humans are unable to digest these sugars, which consequently induce flatulence. To develop the consumption of the otherwise highly nutritional soy products, the use of exogenous alpha-Gal is promising. In this framework, we characterized the melA gene for alpha-Gal in Lactobacillus plantarum. The melA gene encodes a cytoplasmic 84-kDa protein whose enzymatically active form occurs as oligomers. The melA gene was cloned and expressed in Escherichia coli, yielding an active alpha-Gal. We show that melA is transcribed from its own promoter, yielding a monocistronic mRNA, and that it is regulated at the transcriptional level, i.e., it is induced by melibiose but is not totally repressed by glucose. Posttranscriptional regulation by the carbon source could also occur. Upstream of melA, a putative galactoside transporter, designated RafP, was identified that shows high homology to LacS, the unique transporter for both alpha- and beta-galactosides in Streptococcus thermophilus. rafP is also expressed as a monocistronic mRNA. Downstream of melA, the lacL and lacM genes were identified that encode a heterodimeric beta-galactosidase. A putative galM gene identified in the same cluster suggests the presence of a galactose operon. These results indicate that the genes involved in galactoside catabolism are clustered in L. plantarum ATCC 8014. This first genetic characterization of melA and of its putative associated transporter, rafP, in a lactobacillus opens doors to various applications both in the manufacture of soy-derived products and in probiotic and nutraceutical issues.

摘要

α-半乳糖苷是豆类(如大豆)中丰富的糖类。由于消化道中缺乏α-半乳糖苷酶(α-Gal),人类无法消化这些糖类,从而导致肠胃胀气。为了促进食用原本营养丰富的大豆制品,使用外源性α-Gal很有前景。在此框架下,我们对植物乳杆菌中编码α-Gal的melA基因进行了表征。melA基因编码一种细胞质84 kDa蛋白,其酶活性形式以寡聚体存在。melA基因在大肠杆菌中克隆并表达,产生了有活性的α-Gal。我们发现melA从其自身启动子转录,产生单顺反子mRNA,并且在转录水平受到调控,即它由蜜二糖诱导,但不完全被葡萄糖抑制。碳源也可能发生转录后调控。在melA上游,鉴定出一个假定的半乳糖苷转运蛋白,命名为RafP,它与嗜热链球菌中α-和β-半乳糖苷的唯一转运蛋白LacS具有高度同源性。rafP也作为单顺反子mRNA表达。在melA下游,鉴定出编码异源二聚体β-半乳糖苷酶的lacL和lacM基因。在同一基因簇中鉴定出的一个假定的galM基因表明存在一个半乳糖操纵子。这些结果表明,参与半乳糖苷分解代谢的基因在植物乳杆菌ATCC 8014中是成簇的。对melA及其假定的相关转运蛋白rafP在乳酸菌中的首次遗传表征为大豆衍生产品的制造以及益生菌和营养保健品问题的各种应用打开了大门。

相似文献

1
Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum.
Appl Environ Microbiol. 2002 Nov;68(11):5464-71. doi: 10.1128/AEM.68.11.5464-5471.2002.
2
The Operon Encodes a Utilization System for the Raffinose Family of Oligosaccharides in .
J Bacteriol. 2019 Jul 10;201(15). doi: 10.1128/JB.00109-19. Print 2019 Aug 1.
4
Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An α-galactosidase displaying regioselective transgalactosylation.
Int J Biol Macromol. 2020 Jun 15;153:1070-1079. doi: 10.1016/j.ijbiomac.2019.10.237. Epub 2019 Oct 28.
5
Characterization of genes involved in the metabolism of alpha-galactosides by Lactococcus raffinolactis.
Appl Environ Microbiol. 2003 Jul;69(7):4049-56. doi: 10.1128/AEM.69.7.4049-4056.2003.
6
Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by WCFS1 MelA α-Galactosidase.
J Agric Food Chem. 2021 Jan 27;69(3):955-965. doi: 10.1021/acs.jafc.0c06417. Epub 2021 Jan 12.
7
Unusual organization for lactose and galactose gene clusters in Lactobacillus helveticus.
Appl Environ Microbiol. 2003 Jun;69(6):3238-43. doi: 10.1128/AEM.69.6.3238-3243.2003.
8
A thermostable alpha-galactosidase from Lactobacillus fermentum CRL722: genetic characterization and main properties.
Curr Microbiol. 2006 Nov;53(5):374-8. doi: 10.1007/s00284-005-0442-y. Epub 2006 Oct 16.
9
Two genes encoding the beta-galactosidase of Lactobacillus sake.
Microbiology (Reading). 1995 Dec;141 ( Pt 12):3059-66. doi: 10.1099/13500872-141-12-3059.
10
Construction of a new reporter system to study the NaCl-dependent dnaK promoter activity of Lactobacillus sanfranciscensis.
Appl Microbiol Biotechnol. 2006 May;70(6):690-7. doi: 10.1007/s00253-005-0114-7. Epub 2005 Aug 19.

引用本文的文献

2
Prebiotic Effects of α- and β-Galactooligosaccharides: The Structure-Function Relation.
Molecules. 2025 Feb 9;30(4):803. doi: 10.3390/molecules30040803.
3
Sugar Utilization-Associated Food-Grade Selection Markers in Lactic Acid Bacteria and Yeast.
Pol J Microbiol. 2024 Mar 4;73(1):3-10. doi: 10.33073/pjm-2024-011. eCollection 2024 Mar 1.
5
Unraveling the mechanism of raffinose utilization in Ren by transcriptomic analysis.
3 Biotech. 2022 Sep;12(9):229. doi: 10.1007/s13205-022-03280-6. Epub 2022 Aug 17.
6
Molecular advances in microbial α-galactosidases: challenges and prospects.
World J Microbiol Biotechnol. 2022 Jul 1;38(9):148. doi: 10.1007/s11274-022-03340-2.
7
Inulin addition improved probiotic survival in soy-based fermented beverage.
World J Microbiol Biotechnol. 2022 Jun 11;38(8):133. doi: 10.1007/s11274-022-03322-4.
9
Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains.
J Agric Food Chem. 2019 Dec 18;67(50):13969-13977. doi: 10.1021/acs.jafc.9b05968. Epub 2019 Dec 5.
10
Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract.
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01788-19. Print 2019 Nov 15.

本文引用的文献

1
Transport of beta-Galactosides in Lactobacillus plantarum NC2.
Appl Environ Microbiol. 1990 Aug;56(8):2484-2487. doi: 10.1128/aem.56.8.2484-2487.1990.
2
Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas.
Nahrung. 2002 Apr;46(2):92-5. doi: 10.1002/1521-3803(20020301)46:2<92::AID-FOOD92>3.0.CO;2-P.
4
5
Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA.
Appl Environ Microbiol. 2001 Nov;67(11):5094-9. doi: 10.1128/AEM.67.11.5094-5099.2001.
6
A cryptic melibiose transporter gene possessing a frameshift from Citrobacter freundii.
J Biochem. 2001 Apr;129(4):607-13. doi: 10.1093/oxfordjournals.jbchem.a002897.
7
Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus.
J Bacteriol. 2001 Feb;183(4):1184-94. doi: 10.1128/JB.183.4.1184-1194.2001.
8
Temperature-dependent variation in API 50 CH fermentation profiles of Lactobacillus species.
Curr Microbiol. 2000 Jul;41(1):21-6. doi: 10.1007/s002840010085.
10
Duplication of the beta-galactosidase gene in some Lactobacillus plantarum strains.
Int J Food Microbiol. 1999 May 1;48(2):113-23. doi: 10.1016/s0168-1605(99)00031-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验