Bieberich Erhard
Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street Room CB-2803, Augusta, GA 30912, USA.
Biosystems. 2002 Aug-Sep;66(3):145-64. doi: 10.1016/s0303-2647(02)00040-0.
The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops: output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons. This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal computation into conscious experience.
生物网络的调节在很大程度上依赖于收敛反馈信号回路,这些回路使全局输出在局部可及。理想情况下,这些系统中的循环连接是通过时间依赖的锁相机制自组织的。本研究分析了循环分形神经网络(RFNNs),它利用树突和下游网络的自相似或分形分支结构来实现相互反馈回路的锁相:网络树外部分支节点的输出进入单个神经元中树突树的内部分支节点。这种结构组织使RFNNs能够通过来自具有等效信号传播时间的反馈回路的阈值以上信号求和来放大折返输入。新皮层V层和III层中锥体神经元的柱状组织被讨论为这种网络架构的结构基础。RFNNs自组织尖峰序列,并使整个神经网络输出对该网络内每个神经元的树突树可及。作为收缩映射操作的结果,局部树突输入模式包含网络输出编码结构的缩小版本。RFNNs执行强大的分形数据压缩,从而应对收敛神经网络中有限数量的用于信号传输的反馈回路。这一特性被视为朝着解决神经科学中一个基本问题迈出的重要一步:在意识体验的实例中,如何将不同神经元和遥远脑区的神经元计算统一起来?RFNNs是使神经网络参与连贯活动的有前途的候选者,并为人类大脑中全局和局部信息处理的交换提供了一种策略,从而确保从神经元计算到意识体验的转变的完整性。