Suppr超能文献

意识的分形原理与森蒂昂假设导论。

Introduction to the fractality principle of consciousness and the sentyon postulate.

作者信息

Bieberich Erhard

机构信息

Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, [now Georgia Regents University], 1120 15 Street Room CA4012, Augusta, GA 30912.

出版信息

Cognit Comput. 2012 Mar;4(1):13-28. doi: 10.1007/s12559-011-9104-5.

Abstract

Recently, consciousness research has gained much attention. Indeed, the question at stake is significant: why is the brain not just a computing device, but generates a perception from within? Ambitious endeavors trying to simulate the entire human brain assume that the algorithm will do the trick: as soon as we assemble the brain in a computer and increase the number of operations per time, consciousness will emerge by itself. I disagree with this simplistic representation. My argument emerges from the "atomism paradox": the irreducible space of the consciously perceived world, the endospace is incompatible with the reducible and decomposable architecture of the brain or a computer. I will first discuss the fundamental challenges in current consciousness models and then propose a new model based on the fractality principle: "the whole is in each of its parts". This new model copes with the atomism paradox by implementing an iterative mapping of information from higher order brain structures to smaller scales on the cellular and molecular level, which I will refer to as "fractalization". This information fractalization gives rise to a new form of matter that is conscious ("bright matter"). Bright matter is composed of conscious particles or units named "sentyons". The internal fractality of these sentyons will close a loop (the "psychic loop") in a recurrent fractal neural network (RFNN) that allows for continuous and complete information transformation and sharing between higher order brain structures and the endpoint substrate of consciousness at the molecular level.

摘要

最近,意识研究备受关注。的确,所涉及的问题意义重大:为什么大脑不仅仅是一个计算设备,而是能从内部产生感知?试图模拟整个人脑的雄心勃勃的努力假定算法会起作用:一旦我们在计算机中组装大脑并增加每次的运算次数,意识就会自行出现。我不同意这种简单化的表述。我的论点源于“原子主义悖论”:有意识感知世界的不可约空间,即内空间,与大脑或计算机可约且可分解的架构不相容。我将首先讨论当前意识模型中的基本挑战,然后提出一种基于分形原理的新模型:“整体存在于其每个部分之中”。这个新模型通过在细胞和分子水平上实现从高阶脑结构到更小尺度的信息迭代映射来应对原子主义悖论,我将其称为“分形化”。这种信息分形化产生了一种新的有意识的物质形式(“亮物质”)。亮物质由名为“感知子”的有意识粒子或单元组成。这些感知子的内部分形性将在递归分形神经网络(RFNN)中形成一个循环(“心理循环”),该循环允许在高阶脑结构和分子水平的意识终点底物之间进行连续且完整的信息转换和共享。

相似文献

2
Consciousness, biology and quantum hypotheses.意识、生物学与量子假说。
Phys Life Rev. 2012 Sep;9(3):285-94. doi: 10.1016/j.plrev.2012.07.001. Epub 2012 Jul 10.
7
Predictive Neuronal Adaptation as a Basis for Consciousness.作为意识基础的预测性神经元适应
Front Syst Neurosci. 2022 Jan 11;15:767461. doi: 10.3389/fnsys.2021.767461. eCollection 2021.

引用本文的文献

1

本文引用的文献

1
Biology of consciousness.意识生物学
Front Psychol. 2011 Jan 25;2:4. doi: 10.3389/fpsyg.2011.00004. eCollection 2011.
5
Dendritic discrimination of temporal input sequences in cortical neurons.皮质神经元对时间输入序列的树突分辨。
Science. 2010 Sep 24;329(5999):1671-5. doi: 10.1126/science.1189664. Epub 2010 Aug 12.
8
Lipid microdomains and the regulation of ion channel function.脂质微区与离子通道功能的调节。
J Physiol. 2010 Sep 1;588(Pt 17):3169-78. doi: 10.1113/jphysiol.2010.191585. Epub 2010 Jun 2.
10
Lipid rafts as a membrane-organizing principle.脂筏作为一种膜组织原则。
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验