Suppr超能文献

基于混合模型的BYY和谐学习、结构RPCL和拓扑自组织。

BYY harmony learning, structural RPCL, and topological self-organizing on mixture models.

作者信息

Xu Lei

机构信息

Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, NT, People's Republic of China.

出版信息

Neural Netw. 2002 Oct-Nov;15(8-9):1125-51. doi: 10.1016/s0893-6080(02)00084-9.

Abstract

The Bayesian Ying-Yang (BYY) harmony learning acts as a general statistical learning framework, featured by not only new regularization techniques for parameter learning but also a new mechanism that implements model selection either automatically during parameter learning or via a new class of model selection criteria used after parameter learning. In this paper, further advances on BYY harmony learning by considering modular inner representations are presented in three parts. One consists of results on unsupervisedmixture models, ranging from Gaussian mixture based Mean Square Error (MSE) clustering, elliptic clustering, subspace clustering to NonGaussian mixture based clustering not only with each cluster represented via either Bernoulli-Gaussian mixtures or independent real factor models, but also with independent component analysis implicitly made on each cluster. The second consists of results on supervised mixture-of-experts (ME) models, including Gaussian ME, Radial Basis Function nets, and Kernel regressions. The third consists of two strategies for extending the above structural mixtures into self-organized topological maps. All these advances are introduced with details on three issues, namely, (a) adaptive learning algorithms, especially elliptic, subspace, and structural rival penalized competitive learning algorithms, with model selection made automatically during learning; (b) model selection criteria for being used after parameter learning, and (c) how these learning algorithms and criteria are obtained from typical special cases of BYY harmony learning.

摘要

贝叶斯阴阳(BYY)和谐学习作为一种通用的统计学习框架,其特点不仅在于参数学习的新正则化技术,还在于一种新机制,该机制可在参数学习期间自动执行模型选择,或通过参数学习后使用的新型模型选择标准来实现模型选择。本文从三个方面介绍了通过考虑模块化内部表示在BYY和谐学习方面取得的进一步进展。一是关于无监督混合模型的结果,范围从基于高斯混合的均方误差(MSE)聚类、椭圆聚类、子空间聚类到基于非高斯混合的聚类,其中每个聚类不仅通过伯努利 - 高斯混合或独立实因子模型表示,而且对每个聚类隐含地进行独立成分分析。二是关于监督专家混合(ME)模型的结果,包括高斯ME、径向基函数网络和核回归。三是将上述结构混合扩展为自组织拓扑图的两种策略。所有这些进展都围绕三个问题详细介绍,即:(a)自适应学习算法,特别是椭圆、子空间和结构竞争惩罚竞争学习算法,在学习过程中自动进行模型选择;(b)参数学习后使用的模型选择标准;(c)这些学习算法和标准如何从BYY和谐学习的典型特殊情况中获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验