Castet Eric, Jeanjean Sébastien, Masson Guillaume S
Institut de Neurosciences Physiologiques et Cognitives, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15159-63. doi: 10.1073/pnas.232377199. Epub 2002 Nov 4.
Active visual perception relies on the ability to interpret correctly retinal motion signals induced either by moving objects viewed with static eyes or by stationary objects viewed with moving eyes. A motionless environment is not normally perceived as moving during saccadic eye movements. It is commonly believed that this phenomenon involves central oculomotor signals that inhibit intrasaccadic visual motion processing. The keystone of this extraretinal theory relies on experimental reports showing that physically stationary scenes displayed only during saccades, thus producing high retinal velocities, are never perceived as moving but appear as static blurred images. We, however, provide evidence that stimuli optimized for high-speed motion detection elicit clear motion perception against saccade direction, thus making the search for extraretinal suppression superfluous. The data indicate that visual motion is the main cue used by observers to perform the task independently of other perceptual factors covarying with intrasaccadic stimulation. By using stimuli of different durations, we show that the probability of perceiving the stimulus as static, rather than moving, increases when the intrasaccadic stimulation is preceded or followed by a significant extrasaccadic stimulation. We suggest that intrasaccadic motion perception is accomplished by motion-selective magnocellular neurons through temporal integration of rapidly increasing retinal velocities. The functional mechanism that usually prevents this intrasaccadic activity from being perceived seems to rely on temporal masking effects induced by the static retinal images present before and/or after the saccade.
主动视觉感知依赖于正确解释视网膜运动信号的能力,这些信号要么由静止眼睛观看运动物体时产生,要么由运动眼睛观看静止物体时产生。在扫视眼动期间,静止的环境通常不会被感知为运动的。人们普遍认为,这种现象涉及中枢动眼神经信号,该信号会抑制扫视期间的视觉运动处理。这种视网膜外理论的关键依赖于实验报告,这些报告表明仅在扫视期间显示的物理上静止的场景,从而产生高视网膜速度,从未被感知为运动的,而是呈现为静态模糊图像。然而,我们提供的证据表明,针对高速运动检测优化的刺激会引发与扫视方向相反的清晰运动感知,从而使得寻找视网膜外抑制变得多余。数据表明,视觉运动是观察者执行任务所使用的主要线索,独立于与扫视期间刺激相关的其他感知因素。通过使用不同持续时间的刺激,我们表明,当扫视期间的刺激之前或之后伴有显著的扫视外刺激时,将刺激感知为静态而非运动的概率会增加。我们认为,扫视期间的运动感知是由运动选择性大细胞神经元通过对快速增加的视网膜速度进行时间整合来完成的。通常阻止这种扫视期间活动被感知的功能机制似乎依赖于扫视之前和/或之后存在的静态视网膜图像所诱导的时间掩蔽效应。