Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France.
eNeuro. 2024 Feb 9;11(2). doi: 10.1523/ENEURO.0287-23.2023. Print 2024 Feb.
Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across fixations to construct a complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed. We demonstrate how adaptation recovery times and saccade properties interact and thus shape spatiotemporal tradeoffs observed in the motor and visual systems of mice, cats, marmosets, macaques, and humans. These tradeoffs predict that in order to achieve similar visual coverage over time, animals with smaller receptive field sizes require faster saccade rates. Indeed, we find comparable sampling of the visual environment by neuronal populations across mammals when integrating measurements of saccadic behavior with receptive field sizes and V1 neuronal density. We propose that these mammals share a common statistically driven strategy of maintaining coverage of their visual environment over time calibrated to their respective visual system characteristics.
大多数脊椎动物使用头部和眼部运动来快速改变注视方向,并在稳定注视期间采样环境的不同部分。视觉信息必须在注视期间进行整合,以构建对视觉环境的完整视角。与这种采样策略一致,神经元适应不变的输入以节省能量,并确保仅从每个注视点处理新信息。我们展示了适应恢复时间和扫视特性如何相互作用,从而塑造了在小鼠、猫、狨猴、猕猴和人类的运动和视觉系统中观察到的时空权衡。这些权衡表明,为了在一段时间内获得类似的视觉覆盖范围,视场较小的动物需要更快的扫视速度。事实上,当我们将扫视行为的测量结果与视场大小和 V1 神经元密度相结合时,发现跨哺乳动物的神经元群体对视觉环境进行了类似的采样。我们提出,这些哺乳动物共享一种共同的统计驱动策略,即根据各自的视觉系统特征,随着时间的推移保持对其视觉环境的覆盖。