Hagemann A, Rohr K, Stiehl H S
Universität Hamburg, FB Informatik, AB Kognitive Systeme, Vogt-Kölln-Strasse 30, 22527 Hamburg, Germany.
Med Image Anal. 2002 Dec;6(4):375-88. doi: 10.1016/s1361-8415(02)00059-2.
In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images with respect to intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our new approach has been tested and compared to a purely linear elastic model using synthetic as well as tomographic images. It turns out from our experiments, that the integrated treatment of rigid, elastic and fluid regions improves the physical plausibility of the predicted deformation results as compared to a purely linear elastic model.
为了提高图像引导神经外科手术的准确性,人们开发了不同的生物力学模型,以根据术中变化(如脑移位或肿瘤切除)校正术前图像。所有现有的生物力学模型通过使用适当的边界条件或空间变化的材料参数值来模拟不同的解剖结构,同时对所有解剖结构采用相同的物理模型。一般来说,这会导致物理上不合理的结果,尤其是在相邻的弹性和流体结构的情况下。因此,我们提出了一种新的方法,该方法允许耦合不同的物理模型。在我们的案例中,我们通过对每种材料使用适当的物理描述,即纳维方程或斯托克斯方程,来模拟刚性、弹性和流体区域。为了求解由此产生的微分方程,我们通过应用有限元方法(FEM)为每个区域推导一个线性矩阵系统。此后,将线性矩阵系统链接在一起,最终得到一个整体的线性矩阵系统。我们的新方法已经使用合成图像和断层图像进行了测试,并与纯线性弹性模型进行了比较。我们的实验表明,与纯线性弹性模型相比,对刚性、弹性和流体区域的综合处理提高了预测变形结果的物理合理性。