Suppr超能文献

用于实时预测软组织器官变形的个体化非线性有限元建模:在非刚性神经影像配准中的应用。

Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

机构信息

Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.

出版信息

Prog Biophys Mol Biol. 2010 Dec;103(2-3):292-303. doi: 10.1016/j.pbiomolbio.2010.09.001. Epub 2010 Sep 22.

Abstract

Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer.

摘要

非线性(即考虑几何和材料非线性)生物力学模型的计算时间较长,一直被认为是阻止此类模型应用于预测图像引导手术中器官变形的关键因素之一。本研究利用图形处理单元(GPU)上实现的专用非线性有限元程序,针对 6 例开颅术(即颅骨手术切开)引起的脑移位,实时计算了大脑内变形场。与依赖更新拉格朗日公式和隐式时域积分求解稳态解的商业有限元代码不同,我们的程序采用全拉格朗日公式,显式时间步长和动力松弛。我们使用了包含六面体和非锁定四面体单元的患者特定有限元网格,以及用于脑组织的真实材料特性和适当的边界接触条件。通过在开颅术下的脑表面上规定变形来定义加载。将计算出的变形场应用于注册(即对齐)术前和术中图像表明,这些模型非常准确地预测了大脑内的术中变形。对于每个病例,使用 NVIDIA Tesla C870 GPU 计算大脑变形场的时间不到 4 秒,与我们之前使用个人计算机上执行的商业有限元求解器预测大脑变形的研究相比,计算时间减少了两个数量级。

相似文献

2
Real-time prediction of brain shift using nonlinear finite element algorithms.使用非线性有限元算法对脑移位进行实时预测。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):300-7. doi: 10.1007/978-3-642-04271-3_37.

引用本文的文献

2
SlicerCBM: automatic framework for biomechanical analysis of the brain.SlicerCBM:用于大脑生物力学分析的自动框架。
Int J Comput Assist Radiol Surg. 2023 Oct;18(10):1925-1940. doi: 10.1007/s11548-023-02881-7. Epub 2023 Apr 1.
3
measurement of human brain material properties under quasi-static loading.在准静态加载下测量人类大脑物质特性。
J R Soc Interface. 2022 Dec;19(197):20220557. doi: 10.1098/rsif.2022.0557. Epub 2022 Dec 14.

本文引用的文献

5
Real-time prediction of brain shift using nonlinear finite element algorithms.使用非线性有限元算法对脑移位进行实时预测。
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):300-7. doi: 10.1007/978-3-642-04271-3_37.
6
Computation of intra-operative brain shift using dynamic relaxation.使用动态松弛法计算术中脑移位
Comput Methods Appl Mech Eng. 2009 Sep 1;198(41):3313-3320. doi: 10.1016/j.cma.2009.06.012.
9
Towards a validation of atlas warping techniques.迈向图谱变形技术的验证。
Med Image Anal. 2008 Dec;12(6):713-26. doi: 10.1016/j.media.2008.04.003. Epub 2008 May 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验