Riou Laurent M, Ruiz Mirta, Rieger Jayson M, Macdonald Timothy L, Watson Denny D, Linden Joel, Beller George A, Glover David K
Cardiovascular Division, University of Virginia Health System, Charlottesville, VA 22908-0500, USA.
J Am Coll Cardiol. 2002 Nov 6;40(9):1687-94. doi: 10.1016/s0735-1097(02)02372-0.
The study was done to determine the effects of propranolol, enalaprilat, verapamil, and caffeine on the vasodilatory properties of the adenosine A(2A)-receptor agonist ATL-146e (ATL).
ATL is a new adenosine A(2A)-receptor agonist proposed as a vasodilator for myocardial stress perfusion imaging. Beta-blockers, angiotensin-converting enzyme (ACE) inhibitors, and calcium blockers are commonly used for the treatment of coronary artery disease (CAD), and their effect on ATL-mediated vasodilation is unknown. Dietary intake of caffeine is also common.
In 19 anesthetized, open-chest dogs, hemodynamic responses to bolus injections of ATL (1.0 microg/kg) and adenosine (60 microg/kg) were recorded before and after administration of propranolol (1.0 mg/kg, ATL only), enalaprilat (0.3 mg/kg, ATL only), caffeine (5.0 mg/kg, ATL only), and verapamil (0.2 mg/kg bolus, ATL and adenosine).
Neither propranolol nor enalaprilat attenuated the ATL-mediated vasodilation (225 +/- 86% and 237 +/- 67% increase, respectively, p = NS vs. control). Caffeine had an inhibitory effect (97 +/- 28% increase, p < 0.05 vs. control). Verapamil blunted both ATL- and adenosine-induced vasodilation (63 +/- 20% and 35 +/- 7%, respectively, p < 0.05 vs. baseline), and also inhibited the vasodilation induced by the adenosine triphosphate-sensitive potassium (K(ATP)) channel activator pinacidil.
Beta-blockers and ACE inhibitors do not reduce the maximal coronary flow response to adenosine A(2A)-agonists, whereas verapamil attenuated this vasodilation through inhibition of K(ATP) channels. The inhibitory effect of verapamil and K(ATP) channel inhibitors like glybenclamide on pharmacologic stress using adenosine or adenosine A(2A)-receptor agonists should be evaluated in the clinical setting to determine their potential for reducing the sensitivity of CAD detection with perfusion imaging.