Suppr超能文献

视觉皮层中抑制现象的突触学解释。

A synaptic explanation of suppression in visual cortex.

作者信息

Carandini Matteo, Heeger David J, Senn Walter

机构信息

Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology, CH-8057 Zurich, Switzerland.

出版信息

J Neurosci. 2002 Nov 15;22(22):10053-65. doi: 10.1523/JNEUROSCI.22-22-10053.2002.

Abstract

The responses of neurons in the primary visual cortex (V1) are suppressed by mask stimuli that do not elicit responses if presented alone. This suppression is widely believed to be mediated by intracortical inhibition. As an alternative, we propose that it can be explained by thalamocortical synaptic depression. This explanation correctly predicts that suppression is monocular, immune to cortical adaptation, and occurs for mask stimuli that elicit responses in the thalamus but not in the cortex. Depression also explains other phenomena previously ascribed to intracortical inhibition. It explains why responses saturate at high stimulus contrast, whereas selectivity for orientation and spatial frequency is invariant with contrast. It explains why transient responses to flashed stimuli are nonlinear, whereas spatial summation is primarily linear. These results suggest that the very first synapses into the cortex, and not the cortical network, may account for important response properties of V1 neurons.

摘要

初级视觉皮层(V1)中的神经元反应会受到掩蔽刺激的抑制,这些掩蔽刺激单独呈现时不会引发反应。人们普遍认为这种抑制是由皮质内抑制介导的。作为一种替代解释,我们提出它可以用丘脑皮质突触抑制来解释。这种解释正确地预测了抑制是单眼的,不受皮质适应的影响,并且发生在那些在丘脑中引发反应但在皮质中不引发反应的掩蔽刺激情况下。抑制也解释了先前归因于皮质内抑制的其他现象。它解释了为什么反应在高刺激对比度下会饱和,而对方向和空间频率的选择性却与对比度无关。它解释了为什么对闪光刺激的瞬态反应是非线性的,而空间总和主要是线性的。这些结果表明,进入皮层的最初突触,而非皮层网络,可能是V1神经元重要反应特性的原因。

相似文献

1
A synaptic explanation of suppression in visual cortex.
J Neurosci. 2002 Nov 15;22(22):10053-65. doi: 10.1523/JNEUROSCI.22-22-10053.2002.
2
Suppression without inhibition in visual cortex.
Neuron. 2002 Aug 15;35(4):759-71. doi: 10.1016/s0896-6273(02)00819-x.
3
Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
Neuroscience. 2007 Nov 23;149(4):962-75. doi: 10.1016/j.neuroscience.2007.08.001. Epub 2007 Aug 9.
4
Comparison of mechanisms for contrast-invariance of orientation selectivity in simple cells.
Neuroscience. 2017 Apr 21;348:41-62. doi: 10.1016/j.neuroscience.2017.01.052. Epub 2017 Feb 9.
5
Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning.
J Neurophysiol. 2001 May;85(5):2130-49. doi: 10.1152/jn.2001.85.5.2130.
6
8
Opponent inhibition: a developmental model of layer 4 of the neocortical circuit.
Neuron. 2002 Jan 3;33(1):131-42. doi: 10.1016/s0896-6273(01)00570-0.
9
Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex.
Neuron. 2005 Jan 6;45(1):133-45. doi: 10.1016/j.neuron.2004.12.024.

引用本文的文献

2
Stabilization of recurrent neural networks through divisive normalization.
bioRxiv. 2025 May 21:2025.05.16.654567. doi: 10.1101/2025.05.16.654567.
3
What Factors Affect Binocular Summation?
Brain Sci. 2024 Nov 28;14(12):1205. doi: 10.3390/brainsci14121205.
5
Response sub-additivity and variability quenching in visual cortex.
Nat Rev Neurosci. 2024 Apr;25(4):237-252. doi: 10.1038/s41583-024-00795-0. Epub 2024 Feb 19.
6
Investigating cross-orientation inhibition with continuous tracking.
J Vis. 2024 Feb 1;24(2):2. doi: 10.1167/jov.24.2.2.
7
A power law describes the magnitude of adaptation in neural populations of primary visual cortex.
Nat Commun. 2023 Dec 15;14(1):8366. doi: 10.1038/s41467-023-43572-w.
8
Input-specific synaptic depression shapes temporal integration in mouse visual cortex.
Neuron. 2023 Oct 18;111(20):3255-3269.e6. doi: 10.1016/j.neuron.2023.07.003. Epub 2023 Aug 4.
9
Neural substrates of perception in the vestibular thalamus during natural self-motion: A review.
Curr Res Neurobiol. 2023 Jan 11;4:100073. doi: 10.1016/j.crneur.2023.100073. eCollection 2023.
10
Input-specific synaptic depression shapes temporal integration in mouse visual cortex.
bioRxiv. 2023 Feb 1:2023.01.30.526211. doi: 10.1101/2023.01.30.526211.

本文引用的文献

1
The contrast sensitivity of retinal ganglion cells of the cat.
J Physiol. 1966 Dec;187(3):517-52. doi: 10.1113/jphysiol.1966.sp008107.
2
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
3
RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT.
J Neurophysiol. 1965 Mar;28:229-89. doi: 10.1152/jn.1965.28.2.229.
4
Spike-based synaptic plasticity and the emergence of direction selective simple cells: simulation results.
J Comput Neurosci. 2002 Nov-Dec;13(3):167-86. doi: 10.1023/a:1020210230751.
5
Suppression without inhibition in visual cortex.
Neuron. 2002 Aug 15;35(4):759-71. doi: 10.1016/s0896-6273(02)00819-x.
6
Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function.
J Neurophysiol. 2002 Aug;88(2):888-913. doi: 10.1152/jn.2002.88.2.888.
7
How noise contributes to contrast invariance of orientation tuning in cat visual cortex.
J Neurosci. 2002 Jun 15;22(12):5118-28. doi: 10.1523/JNEUROSCI.22-12-05118.2002.
10
Laminar processing of stimulus orientation in cat visual cortex.
J Physiol. 2002 Apr 1;540(Pt 1):321-33. doi: 10.1113/jphysiol.2001.012776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验