Palmer Stephanie E, Miller Kenneth D
Department of Physiology and Sloan-Swartz Center for Theoretical Neurobiology, University of California at San Francisco, San Francisco, CA, USA.
J Neurophysiol. 2007 Jul;98(1):63-78. doi: 10.1152/jn.00152.2007. Epub 2007 May 16.
The origin of orientation selectivity in primary visual cortex (V1) is a model problem for understanding cerebral cortical circuitry. A key constraint is that orientation tuning width is invariant under changes in stimulus contrast. We have previously shown that this can arise from the combination of feedforward lateral geniculate nucleus (LGN) input and an orientation-untuned component of feedforward inhibition that dominates excitation. However, these models did not include the large background voltage noise observed in vivo. Here, we include this noise and examine a simple model of cat V1 response. Constraining our simulations to fit physiological data, our single model parameter is the strength of feedforward inhibition relative to LGN excitation. With physiological noise, the contrast invariance of orientation tuning depends little on inhibition level, although very weak or very strong inhibition leads to weak broadening or sharpening, respectively, of tuning with contrast. For any inhibition level, an alternative measure of orientation tuning -- the circular variance -- decreases with contrast as observed experimentally. These results arise primarily because the voltage noise causes large inputs to be much more strongly amplified than small ones in evoking spiking responses, relatively suppressing responses to nonpreferred stimuli. However, inhibition comparable to or stronger than excitation appears necessary to suppress spiking responses to nonpreferred orientations to the extent seen in vivo and to allow the emergence of a tuned mean voltage response. These two response properties provide the strongest constraints on model details. Antiphase inhibition from inhibitory simple cells, and not just untuned inhibition from inhibitory complex cells, appears necessary to fully explain these aspects of cortical orientation tuning.
初级视觉皮层(V1)中方向选择性的起源是理解大脑皮层神经回路的一个典型问题。一个关键限制是,在刺激对比度变化时,方向调谐宽度保持不变。我们之前已经表明,这可能源于前馈外侧膝状体核(LGN)输入与占主导地位的前馈抑制的方向非调谐成分的结合。然而,这些模型没有包括在体内观察到的大量背景电压噪声。在这里,我们纳入了这种噪声,并研究了一个简单的猫V1反应模型。通过约束我们的模拟以拟合生理数据,我们的单一模型参数是前馈抑制相对于LGN兴奋的强度。有了生理噪声,方向调谐的对比度不变性几乎不依赖于抑制水平,尽管非常弱或非常强的抑制分别会导致调谐随对比度的微弱展宽或锐化。对于任何抑制水平,方向调谐的另一种度量——圆方差——会像实验观察到的那样随对比度降低。这些结果主要是因为电压噪声在引发尖峰反应时,会使大输入比小输入得到更强的放大,相对抑制了对非偏好刺激的反应。然而,与兴奋相当或更强的抑制似乎是必要的,以便在体内观察到的程度上抑制对非偏好方向的尖峰反应,并使调谐的平均电压反应得以出现。这两种反应特性对模型细节提供了最强的限制。来自抑制性简单细胞的反相抑制,而不仅仅是来自抑制性复杂细胞的非调谐抑制,似乎是充分解释皮层方向调谐这些方面所必需的。