Hasty Jeff, McMillen David, Collins J J
Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA.
Nature. 2002 Nov 14;420(6912):224-30. doi: 10.1038/nature01257.
A central focus of postgenomic research will be to understand how cellular phenomena arise from the connectivity of genes and proteins. This connectivity generates molecular network diagrams that resemble complex electrical circuits, and a systematic understanding will require the development of a mathematical framework for describing the circuitry. From an engineering perspective, the natural path towards such a framework is the construction and analysis of the underlying submodules that constitute the network. Recent experimental advances in both sequencing and genetic engineering have made this approach feasible through the design and implementation of synthetic gene networks amenable to mathematical modelling and quantitative analysis. These developments have signalled the emergence of a gene circuit discipline, which provides a framework for predicting and evaluating the dynamics of cellular processes. Synthetic gene networks will also lead to new logical forms of cellular control, which could have important applications in functional genomics, nanotechnology, and gene and cell therapy.
后基因组研究的一个核心重点将是理解细胞现象如何从基因与蛋白质的连接中产生。这种连接产生了类似于复杂电路的分子网络图,而系统的理解将需要开发一个用于描述该电路的数学框架。从工程学角度来看,通向这样一个框架的自然途径是构建和分析构成网络的基础子模块。测序和基因工程方面最近的实验进展通过设计和实施适合数学建模与定量分析的合成基因网络,使这种方法变得可行。这些进展标志着基因电路学科的出现,它为预测和评估细胞过程的动态提供了一个框架。合成基因网络还将导致细胞控制的新逻辑形式,这可能在功能基因组学、纳米技术以及基因和细胞治疗中具有重要应用。