Suppr超能文献

探索绿藻产氢

Probing green algal hydrogen production.

作者信息

Zhang Liping, Melis Anastasios

机构信息

Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2002 Oct 29;357(1426):1499-507; discussion 1507-11. doi: 10.1098/rstb.2002.1152.

Abstract

The recently developed two-stage photosynthesis and H(2)-production protocol with green algae is further investigated in this work. The method employs S deprivation as a tool for the metabolic regulation of photosynthesis. In the presence of S, green algae perform normal photosynthesis, carbohydrate accumulation and oxygen production. In the absence of S, normal photosynthesis stops and the algae slip into the H(2)-production mode. For the first time, to our knowledge, significant amounts of H(2) gas were generated, essentially from sunlight and water. Rates of H(2) production could be sustained continuously for ca. 80 h in the light, but gradually declined thereafter. This work examines biochemical and physiological aspects of this process in the absence or presence of limiting amounts of S nutrients. Moreover, the effects of salinity and of uncouplers of phosphorylation are investigated. It is shown that limiting levels of S can sustain intermediate levels of oxygenic photosynthesis, in essence raising the prospect of a calibration of the rate of photosynthesis by the S content in the growth medium of the algae. It is concluded that careful titration of the supply of S nutrients in the green alga medium might permit the development of a continuous H(2)-production process.

摘要

在本研究中,我们进一步探究了近期开发的利用绿藻进行两阶段光合作用和产氢的方法。该方法采用剥夺硫元素作为光合作用代谢调控的工具。在有硫的情况下,绿藻进行正常的光合作用、碳水化合物积累和氧气产生。在没有硫的情况下,正常光合作用停止,藻类进入产氢模式。据我们所知,首次产生了大量的氢气,基本上是利用阳光和水。产氢速率在光照下可持续约80小时,但此后逐渐下降。本研究考察了在有无限量硫营养条件下该过程的生化和生理方面。此外,还研究了盐度和磷酸化解偶联剂的影响。结果表明,限量的硫可以维持中等水平的放氧光合作用,从本质上提高了通过藻类生长培养基中硫含量来校准光合作用速率的可能性。结论是,仔细滴定绿藻培养基中硫营养的供应可能有助于开发连续产氢过程。

相似文献

1
Probing green algal hydrogen production.
Philos Trans R Soc Lond B Biol Sci. 2002 Oct 29;357(1426):1499-507; discussion 1507-11. doi: 10.1098/rstb.2002.1152.
3
Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
Appl Microbiol Biotechnol. 2011 Jan;89(1):3-15. doi: 10.1007/s00253-010-2879-6. Epub 2010 Sep 28.
5
Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
Planta. 2007 Oct;226(5):1075-86. doi: 10.1007/s00425-007-0609-9. Epub 2007 Aug 25.
6
Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters.
Biotechnol Bioeng. 2002 Jun 30;78(7):731-40. doi: 10.1002/bit.10254.
7
A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.
J Biotechnol. 2007 Mar 10;128(4):776-87. doi: 10.1016/j.jbiotec.2006.12.025. Epub 2007 Jan 13.
10

引用本文的文献

1
Relevance of nutrient media composition for hydrogen production in Chlamydomonas.
Photosynth Res. 2015 Sep;125(3):395-406. doi: 10.1007/s11120-015-0152-7. Epub 2015 May 8.
2
Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.
Biotechnol Bioeng. 2014 Feb;111(2):320-35. doi: 10.1002/bit.25023. Epub 2013 Sep 11.
3
Optimized expression and purification for high-activity preparations of algal [FeFe]-hydrogenase.
PLoS One. 2012;7(4):e35886. doi: 10.1371/journal.pone.0035886. Epub 2012 Apr 26.
4
AlgaGEM--a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome.
BMC Genomics. 2011 Dec 22;12 Suppl 4(Suppl 4):S5. doi: 10.1186/1471-2164-12-S4-S5.
7
RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival.
Plant Cell. 2010 Jun;22(6):2058-84. doi: 10.1105/tpc.109.071167. Epub 2010 Jun 29.
8
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
J Biol Chem. 2010 Sep 24;285(39):30247-60. doi: 10.1074/jbc.M110.122812. Epub 2010 Jun 25.
10
Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
Planta. 2007 Oct;226(5):1075-86. doi: 10.1007/s00425-007-0609-9. Epub 2007 Aug 25.

本文引用的文献

1
Energetic efficiency of hydrogen photoevolution by algal water splitting.
Biophys J. 1988 Aug;54(2):365-8. doi: 10.1016/S0006-3495(88)82968-0.
2
The photosynthetic unit of hydrogen evolution.
Science. 1977 May 20;196(4292):879-80. doi: 10.1126/science.196.4292.879.
3
Fermentative Metabolism of Chlamydomonas reinhardtii: II. Role of Plastoquinone.
Plant Physiol. 1985 Feb;77(2):509-11. doi: 10.1104/pp.77.2.509.
4
Activation and de novo synthesis of hydrogenase in chlamydomonas.
Plant Physiol. 1984 Dec;76(4):1086-9. doi: 10.1104/pp.76.4.1086.
5
Effect of Light Intensity during Growth on Photoinhibition of Intact Attached Bean Leaflets.
Plant Physiol. 1980 Jun;65(6):1181-7. doi: 10.1104/pp.65.6.1181.
6
COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.
Plant Physiol. 1949 Jan;24(1):1-15. doi: 10.1104/pp.24.1.1.
7
Two photochemical systems in photosynthesis.
Nature. 1961 May 6;190:510-1. doi: 10.1038/190510a0.
9
Hydrogen production. Green algae as a source of energy.
Plant Physiol. 2001 Nov;127(3):740-8.
10
Molecular evidence for a Fe-hydrogenase in the green alga Scenedesmus obliquus.
Curr Microbiol. 2001 May;42(5):353-60. doi: 10.1007/s002840010229.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验