Suppr超能文献

通过CH2N2实现钯催化烯烃环丙烷化反应的Pd0机理:一项密度泛函理论研究

Pd0 mechanism of palladium-catalyzed cyclopropanation of alkenes by CH2N2: a DFT study.

作者信息

Straub Bernd F

机构信息

Department Chemie der Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (Haus F), D-81377 Münich, Germany.

出版信息

J Am Chem Soc. 2002 Nov 27;124(47):14195-201. doi: 10.1021/ja027762+.

Abstract

Pathways for the reaction of ethene with diazomethane to cyclopropane and dinitrogen catalyzed by Pd(0) complexes have been investigated at the B3LYP level of theory. The computed Gibbs free activation energy of 71.7 kJ mol(-1) for the most favorable catalytic cycle is by far lower than previously reported computed barriers for Pd(II)-catalyzed pathways of this reaction and is now in the range of experimental expectations. Pd(eta(2)-C(2)H(4))(2) is predicted to be the resting state of the catalyst and the product of a Pd(OAc)(2) precatalyst reduction. The Pd(0) ethene complex is in equilibrium with Pd(eta(2)-C(2)H(4))(kappaC-CH(2)N(2)), from which N(2) is eliminated in the rate-determining step. The resulting carbene complex (eta(2)-C(2)H(4))Pd=CH(2) reacts without intrinsic barrier with CH(2)N(2) to Pd(eta(2)-C(2)H(4))(2) and N(2) and with ethene to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)]. The N(2) elimination from Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) to (eta(2)-C(2)H(4))(2)Pd=CH(2) leads to an overall Gibbs free activation energy of 84.2 kJ mol(-1). The intramolecular rearrangement of (eta(2)-C(2)H(4))(2)Pd=CH(2) to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)] and the subsequent reductive elimination of cyclopropane are facile. At the BP86 level of theory, Pd(0) preferentially coordinates three ligands. Pd(eta(2)-C(2)H(4))(3) is predicted to be the resting state, and the N(2) elimination from the model complex Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) is the rate-determining transition state leading to an overall Gibbs free activation energy of 69.4 kJ mol(-1).

摘要

在理论的B3LYP水平上研究了钯(0)配合物催化乙烯与重氮甲烷反应生成环丙烷和氮气的反应途径。对于最有利的催化循环,计算得到的吉布斯自由活化能为71.7 kJ mol⁻¹,这远比之前报道的该反应钯(II)催化途径的计算能垒低,现在处于实验预期范围内。预计Pd(η²-C₂H₄)₂是催化剂的静止状态以及Pd(OAc)₂前体还原的产物。钯(0)乙烯配合物与Pd(η²-C₂H₄)(κC-CH₂N₂)处于平衡状态,在速率决定步骤中从该平衡态消除N₂。生成的卡宾配合物(η²-C₂H₄)Pd=CH₂与CH₂N₂反应生成Pd(η²-C₂H₄)₂和N₂且无内在能垒,与乙烯反应生成钯环丁烷(η²-C₂H₄)Pd(II)[κC(1),κC(3)-(CH₂)₃]。从Pd(η²-C₂H₄)₂(κC-CH₂N₂)消除N₂生成(η²-C₂H₄)₂Pd=CH₂导致总的吉布斯自由活化能为84.2 kJ mol⁻¹。(η²-C₂H₄)₂Pd=CH₂分子内重排生成钯环丁烷(η²-C₂H₄)Pd(II)[κC(1),κC(3)-(CH₂)₃]以及随后环丙烷的还原消除是容易的。在理论的BP86水平上,钯(0)优先配位三个配体。预计Pd(η²-C₂H₄)₃是静止状态,并且从模型配合物Pd(η²-C₂H₄)₂(κC-CH₂N₂)消除N₂是导致总的吉布斯自由活化能为69.4 kJ mol⁻¹的速率决定过渡态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验