Straub Bernd F
Department Chemie der Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (Haus F), D-81377 Münich, Germany.
J Am Chem Soc. 2002 Nov 27;124(47):14195-201. doi: 10.1021/ja027762+.
Pathways for the reaction of ethene with diazomethane to cyclopropane and dinitrogen catalyzed by Pd(0) complexes have been investigated at the B3LYP level of theory. The computed Gibbs free activation energy of 71.7 kJ mol(-1) for the most favorable catalytic cycle is by far lower than previously reported computed barriers for Pd(II)-catalyzed pathways of this reaction and is now in the range of experimental expectations. Pd(eta(2)-C(2)H(4))(2) is predicted to be the resting state of the catalyst and the product of a Pd(OAc)(2) precatalyst reduction. The Pd(0) ethene complex is in equilibrium with Pd(eta(2)-C(2)H(4))(kappaC-CH(2)N(2)), from which N(2) is eliminated in the rate-determining step. The resulting carbene complex (eta(2)-C(2)H(4))Pd=CH(2) reacts without intrinsic barrier with CH(2)N(2) to Pd(eta(2)-C(2)H(4))(2) and N(2) and with ethene to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)]. The N(2) elimination from Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) to (eta(2)-C(2)H(4))(2)Pd=CH(2) leads to an overall Gibbs free activation energy of 84.2 kJ mol(-1). The intramolecular rearrangement of (eta(2)-C(2)H(4))(2)Pd=CH(2) to the palladacyclobutane (eta(2)-C(2)H(4))Pd(II)[kappaC(1),kappaC(3)-(CH(2))(3)] and the subsequent reductive elimination of cyclopropane are facile. At the BP86 level of theory, Pd(0) preferentially coordinates three ligands. Pd(eta(2)-C(2)H(4))(3) is predicted to be the resting state, and the N(2) elimination from the model complex Pd(eta(2)-C(2)H(4))(2)(kappaC-CH(2)N(2)) is the rate-determining transition state leading to an overall Gibbs free activation energy of 69.4 kJ mol(-1).
在理论的B3LYP水平上研究了钯(0)配合物催化乙烯与重氮甲烷反应生成环丙烷和氮气的反应途径。对于最有利的催化循环,计算得到的吉布斯自由活化能为71.7 kJ mol⁻¹,这远比之前报道的该反应钯(II)催化途径的计算能垒低,现在处于实验预期范围内。预计Pd(η²-C₂H₄)₂是催化剂的静止状态以及Pd(OAc)₂前体还原的产物。钯(0)乙烯配合物与Pd(η²-C₂H₄)(κC-CH₂N₂)处于平衡状态,在速率决定步骤中从该平衡态消除N₂。生成的卡宾配合物(η²-C₂H₄)Pd=CH₂与CH₂N₂反应生成Pd(η²-C₂H₄)₂和N₂且无内在能垒,与乙烯反应生成钯环丁烷(η²-C₂H₄)Pd(II)[κC(1),κC(3)-(CH₂)₃]。从Pd(η²-C₂H₄)₂(κC-CH₂N₂)消除N₂生成(η²-C₂H₄)₂Pd=CH₂导致总的吉布斯自由活化能为84.2 kJ mol⁻¹。(η²-C₂H₄)₂Pd=CH₂分子内重排生成钯环丁烷(η²-C₂H₄)Pd(II)[κC(1),κC(3)-(CH₂)₃]以及随后环丙烷的还原消除是容易的。在理论的BP86水平上,钯(0)优先配位三个配体。预计Pd(η²-C₂H₄)₃是静止状态,并且从模型配合物Pd(η²-C₂H₄)₂(κC-CH₂N₂)消除N₂是导致总的吉布斯自由活化能为69.4 kJ mol⁻¹的速率决定过渡态。