Suppr超能文献

一个C末端抑制结构域通过分子内机制控制p63的活性。

A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism.

作者信息

Serber Zach, Lai Helen C, Yang Annie, Ou Horng D, Sigal Martina S, Kelly Alexander E, Darimont Beatrice D, Duijf Pascal H G, Van Bokhoven Hans, McKeon Frank, Dötsch Volker

机构信息

Graduate Group in Biophysics, University of California San Francisco, San Francisco, California 94143, USA.

出版信息

Mol Cell Biol. 2002 Dec;22(24):8601-11. doi: 10.1128/MCB.22.24.8601-8611.2002.

Abstract

The human genome is far smaller than originally estimated, and one explanation is that alternative splicing creates greater proteomic complexity than a simple count of open reading frames would suggest. The p53 homologue p63, for example, is a tetrameric transcription factor implicated in epithelial development and expressed as at least six isoforms with widely differing transactivation potential. In particular, p63alpha isoforms contain a 27-kDa C-terminal region that drastically reduces their activity and is of clear biological importance, since patients with deletions in this C terminus have phenotypes very similar to patients with mutations in the DNA-binding domain. We have identified a novel domain within this C terminus that is necessary and sufficient for transcriptional inhibition and which acts by binding to a region in the N-terminal transactivation domain of p63 homologous to the MDM2 binding site in p53. Based on this mechanism, we provide a model that explains the transactivation potential of homo- and heterotetramers composed of different p63 isoforms and their effect on p53.

摘要

人类基因组比最初估计的要小得多,一种解释是可变剪接产生的蛋白质组复杂性比简单计算开放阅读框所显示的要高。例如,p53 同源物 p63 是一种四聚体转录因子,参与上皮发育,并以至少六种具有广泛不同转录激活潜力的异构体形式表达。特别是,p63α 异构体包含一个 27 kDa 的 C 末端区域,该区域会大幅降低其活性,并且具有明确的生物学重要性,因为该 C 末端缺失的患者的表型与 DNA 结合域发生突变的患者非常相似。我们在这个 C 末端内鉴定出一个新的结构域,它对于转录抑制是必需且充分的,并且通过与 p63 的 N 末端转录激活域中与 p53 的 MDM2 结合位点同源的区域结合来发挥作用。基于这一机制,我们提供了一个模型,该模型解释了由不同 p63 异构体组成的同型和异型四聚体的转录激活潜力及其对 p53 的影响。

相似文献

1
A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism.
Mol Cell Biol. 2002 Dec;22(24):8601-11. doi: 10.1128/MCB.22.24.8601-8611.2002.
2
Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains.
Mol Cell Biol. 2002 Dec;22(24):8659-68. doi: 10.1128/MCB.22.24.8659-8668.2002.
3
Differential regulation of MDR1 transcription by the p53 family members. Role of the DNA binding domain.
J Biol Chem. 2005 Apr 8;280(14):13213-9. doi: 10.1074/jbc.M414646200. Epub 2005 Jan 5.
4
DNA-binding and transactivation activities are essential for TAp63 protein degradation.
Mol Cell Biol. 2005 Jul;25(14):6154-64. doi: 10.1128/MCB.25.14.6154-6164.2005.
5
Evidence for a distinct inhibitory factor in the regulation of p53 functional activity.
J Biol Chem. 2001 Jul 27;276(30):27999-8005. doi: 10.1074/jbc.M102400200. Epub 2001 May 29.
9
High thermostability and lack of cooperative DNA binding distinguish the p63 core domain from the homologous tumor suppressor p53.
J Biol Chem. 2001 Oct 5;276(40):37390-401. doi: 10.1074/jbc.M103801200. Epub 2001 Jul 26.

引用本文的文献

1
Differential Transcriptional Activity of ΔNp63β Is Encoded by an Isoform-Specific C-Terminus.
Mol Cell Biol. 2025 Jun 23:1-17. doi: 10.1080/10985549.2025.2514529.
5
Disease-related p63 DBD mutations impair DNA binding by distinct mechanisms and varying degree.
Cell Death Dis. 2023 Apr 18;14(4):274. doi: 10.1038/s41419-023-05796-y.
6
8
Distinct interactors define the p63 transcriptional signature in epithelial development or cancer.
Biochem J. 2022 Jun 30;479(12):1375-1392. doi: 10.1042/BCJ20210737.
9
Designed Ankyrin Repeat Proteins as a tool box for analyzing p63.
Cell Death Differ. 2022 Dec;29(12):2445-2458. doi: 10.1038/s41418-022-01030-y. Epub 2022 Jun 18.
10
Structural diversity of p63 and p73 isoforms.
Cell Death Differ. 2022 May;29(5):921-937. doi: 10.1038/s41418-022-00975-4. Epub 2022 Mar 21.

本文引用的文献

1
p63 and p73 are required for p53-dependent apoptosis in response to DNA damage.
Nature. 2002 Apr 4;416(6880):560-4. doi: 10.1038/416560a.
2
The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63.
J Biol Chem. 2002 Jan 25;277(4):2674-81. doi: 10.1074/jbc.M107173200. Epub 2001 Nov 19.
3
Hdmx and Mdm2 can repress transcription activation by p53 but not by p63.
Oncogene. 2001 Jul 27;20(33):4576-80. doi: 10.1038/sj.onc.1204615.
4
Genetic analysis of p73 localized at chromosome 1p36.3 in primary neuroblastomas.
Med Pediatr Oncol. 2001 Jan;36(1):42-4. doi: 10.1002/1096-911X(20010101)36:1<42::AID-MPO1011>3.0.CO;2-K.
6
Regulation of p63 function by Mdm2 and MdmX.
DNA Cell Biol. 2001 Jun;20(6):321-30. doi: 10.1089/10445490152122433.
7
Regulatory domain of protein stability of human P51/TAP63, a P53 homologue.
Biochem Biophys Res Commun. 2001 May 25;283(5):1135-41. doi: 10.1006/bbrc.2001.4905.
9
MDM2 and MDMX can interact differently with ARF and members of the p53 family.
FEBS Lett. 2001 Feb 16;490(3):202-8. doi: 10.1016/s0014-5793(01)02124-x.
10
p53 associates with and targets Delta Np63 into a protein degradation pathway.
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1817-22. doi: 10.1073/pnas.98.4.1817.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验