Avoli Massimo, D'Antuono Margherita, Louvel Jacques, Köhling Rüdiger, Biagini Giuseppe, Pumain René, D'Arcangelo Giovanna, Tancredi Virginia
Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC, Canada H3A 2B4.
Prog Neurobiol. 2002 Oct;68(3):167-207. doi: 10.1016/s0301-0082(02)00077-1.
Seizures in patients presenting with mesial temporal lobe epilepsy result from the interaction among neuronal networks in limbic structures such as the hippocampus, amygdala and entorhinal cortex. Mesial temporal lobe epilepsy, one of the most common forms of partial epilepsy in adulthood, is generally accompanied by a pattern of brain damage known as mesial temporal sclerosis. Limbic seizures can be mimicked in vitro using preparations of combined hippocampus-entorhinal cortex slices perfused with artificial cerebrospinal fluid containing convulsants or nominally zero Mg(2+), in order to produce epileptiform synchronization. Here, we summarize experimental evidence obtained in such slices from rodents. These data indicate that in control animals: (i) prolonged, NMDA receptor-dependent epileptiform discharges, resembling electrographic limbic seizures, originate in the entorhinal cortex from where they propagate to the hippocampus via the perforant path-dentate gyrus route; (ii) the initiation and maintenance of these ictal discharges is paradoxically contributed by GABA (mainly type A) receptor-mediated mechanisms; and (iii) CA3 outputs, which relay a continuous pattern of interictal discharge at approximately 1Hz, control rather than sustain ictal discharge generation in entorhinal cortex. Recent work indicates that such a control is weakened in the pilocarpine model of epilepsy (presumably as a result of CA3 cell damage). In addition, in these experiments electrographic seizure activity spreads directly to the CA1-subiculum regions through the temporoammonic pathway. Studies reviewed here indicate that these changes in network interactions, along with other mechanisms of synaptic plasticity (e.g. axonal sprouting, decreased activation of interneurons, upregulation of bursting neurons) can confer to the epileptic, damaged limbic system, the ability to produce recurrent limbic seizures as seen in patients with mesial temporal lobe epilepsy.
表现为内侧颞叶癫痫的患者发作是由海马体、杏仁核和内嗅皮质等边缘结构中的神经网络相互作用引起的。内侧颞叶癫痫是成年期最常见的部分性癫痫形式之一,通常伴有一种称为内侧颞叶硬化的脑损伤模式。可以使用灌注含惊厥剂或名义上零镁(Mg(2+))的人工脑脊液的海马-内嗅皮质联合切片制剂在体外模拟边缘性发作,以产生癫痫样同步。在此,我们总结了从啮齿动物此类切片中获得的实验证据。这些数据表明,在对照动物中:(i)延长的、依赖N-甲基-D-天冬氨酸(NMDA)受体的癫痫样放电,类似于脑电图边缘性发作,起源于内嗅皮质,从那里它们通过穿通通路-齿状回途径传播到海马体;(ii)这些发作期放电的起始和维持反常地由γ-氨基丁酸(GABA,主要是A型)受体介导的机制促成;以及(iii)CA3输出以大约1赫兹的频率传递间歇性放电的连续模式,控制而非维持内嗅皮质中的发作期放电产生。最近的研究表明,在匹鲁卡品癫痫模型中这种控制被削弱(可能是由于CA3细胞损伤)。此外,在这些实验中,脑电图发作活动通过颞叶-海马通路直接扩散到CA1-下托区域。此处综述的研究表明,这些网络相互作用的变化,连同其他突触可塑性机制(例如轴突发芽、中间神经元激活减少、爆发性神经元上调)可赋予癫痫性受损边缘系统产生内侧颞叶癫痫患者所见的复发性边缘性发作的能力。