Suppr超能文献

盐分灌溉对胡萝卜(Daucus carota L.)生长、离子积累与分配以及叶片气体交换的影响。

Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (Daucus carota L.).

作者信息

Gibberd Mark R, Turner Neil C, Storey Richard

机构信息

CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag No 5, Wembley, WA 6913, Australia.

出版信息

Ann Bot. 2002 Dec;90(6):715-24. doi: 10.1093/aob/mcf253.

Abstract

Like those of many horticultural crop species, the growth and leaf gas exchange responses of carrot (Daucus carota L.) to salinity are poorly understood. In this study ion accumulation in root tissues (periderm, xylem and phloem tissues) and in leaves of different ages was assessed for carrot plants grown in the field with a low level of salinity (5.8 mM Na(+) and 7.5 mM Cl(-)) and in a glasshouse with salinity ranging from 1-80 mM. At low levels of salinity (1-7.5 mM), in both the field and glasshouse, carrot leaves accumulated high concentrations of Cl(-) (140-200 mM); these appear to be the result of a high affinity for Cl(-) uptake and a low retention of Cl(-) in the root system. However, Cl(-) uptake is under tight control, with an 80-fold increase in external salinity resulting in only a 1.5-fold change in the Cl(-) concentration of the shoot and no increase in the Cl(-) concentration of the root xylem tissue. In contrast to Cl(-), shoot Na(+) concentrations were comparatively low (30-40 mM) but increased by seven-fold when salinity was increased by 80-fold. Growth over the 56-d treatment period in the glasshouse was insensitive to salinity less than 20 mM, but at higher concentrations the yield of carrot tap roots declined by 7 % for each 10 mM increase in salinity. At low levels of salinity the accumulation of high concentrations of Cl(-) (150 mM) in carrot laminae did not appear to limit leaf gas exchange. However, photosynthesis and stomatal conductance were reduced by 38 and 53 %, respectively, for plants grown at a salinity of 80 mM compared with those grown at 1 mM. Salinity-induced reductions in both p(i) and carbon isotope discrimination (delta) were small (2.5 Pa and 1.4 per thousand, respectively, at 80 mM) indicating that the reduction in photosynthesis was only marginally influenced by CO(2) supply. At a salinity of 80 mM the photosynthetic capacity was reduced, with a 30 % reduction in the CO(2)-saturated rate of photosynthesis (A(max)) and a 40 % reduction in both the apparent rate of RuBP-carboxylase-limited CO(2) fixation (V(cmax)) and the electron transport rate limiting RuBP regeneration (J(max)). This study has shown that carrot growth and leaf gas exchange are insensitive to the high leaf Cl(-) concentrations that occur at low levels (1-7 mM) of salinity. However, growth is limited at salinity levels above 20 mM and leaf gas exchange is limited at salinity levels above 8 mM.

摘要

与许多园艺作物品种一样,胡萝卜(Daucus carota L.)对盐分的生长和叶片气体交换响应了解甚少。在本研究中,对田间种植的胡萝卜植株(盐分含量低,5.8 mM Na⁺和7.5 mM Cl⁻)以及温室中盐分含量为1 - 80 mM的胡萝卜植株,评估了不同年龄叶片和根组织(周皮、木质部和韧皮部组织)中的离子积累情况。在低盐分水平(1 - 7.5 mM)下,无论是在田间还是温室中,胡萝卜叶片都积累了高浓度的Cl⁻(140 - 200 mM);这似乎是由于对Cl⁻吸收具有高亲和力且根系对Cl⁻的保留率低所致。然而,Cl⁻的吸收受到严格控制,外部盐分增加80倍仅导致地上部Cl⁻浓度变化1.5倍,且根木质部组织中的Cl⁻浓度没有增加。与Cl⁻相反,地上部Na⁺浓度相对较低(30 - 40 mM),但当盐分增加80倍时,Na⁺浓度增加了7倍。在温室中56天的处理期内,盐分低于20 mM时生长对盐分不敏感,但在较高浓度下,盐分每增加10 mM,胡萝卜主根产量下降7%。在低盐分水平下,胡萝卜叶片中高浓度Cl⁻(150 mM)的积累似乎并未限制叶片气体交换。然而,与在1 mM盐分下生长的植株相比,在80 mM盐分下生长的植株光合作用和气孔导度分别降低了38%和53%。盐分诱导的胞间CO₂浓度(p(i))和碳同位素分馏(δ)的降低幅度较小(在80 mM时分别为2.5 Pa和1.4‰),表明光合作用的降低仅受到CO₂供应的轻微影响。在80 mM盐分下,光合能力降低,CO₂饱和光合速率(A(max))降低30%,核酮糖-1,5-二磷酸羧化酶限制的CO₂固定表观速率(V(cmax))和限制核酮糖再生的电子传递速率(J(max))均降低40%。本研究表明,在低盐分水平(1 - 7 mM)下出现的高叶片Cl⁻浓度对胡萝卜生长和叶片气体交换不敏感。然而,盐分水平高于20 mM时生长受到限制,盐分水平高于8 mM时叶片气体交换受到限制。

相似文献

2
The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae).
Photosynth Res. 2010 Dec;106(3):201-14. doi: 10.1007/s11120-010-9595-z. Epub 2010 Sep 14.
4
Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides.
Ann Bot. 2007 Sep;100(3):555-63. doi: 10.1093/aob/mcm119. Epub 2007 Aug 7.
8
Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants.
J Plant Physiol. 2012 Feb 15;169(3):226-33. doi: 10.1016/j.jplph.2011.09.009. Epub 2011 Nov 8.
9
Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined.
Ann Bot. 2009 Jan;103(2):237-48. doi: 10.1093/aob/mcn142. Epub 2008 Aug 13.
10
Can elevated CO(2) improve salt tolerance in olive trees?
J Plant Physiol. 2008 Apr 18;165(6):631-40. doi: 10.1016/j.jplph.2007.01.015. Epub 2007 Aug 28.

本文引用的文献

6
Gas-Exchange Properties of Salt-Stressed Olive (Olea europea L.) Leaves.
Plant Physiol. 1989 Aug;90(4):1408-16. doi: 10.1104/pp.90.4.1408.
8
Photosynthetic and stomatal responses of spinach leaves to salt stress.
Plant Physiol. 1985 May;78(1):85-8. doi: 10.1104/pp.78.1.85.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验