Suppr超能文献

纤溶酶原受体的调控

Regulation of plasminogen receptors.

作者信息

Herren Thomas, Swaisgood Carmen, Plow Edward F

机构信息

Dept of Medicine, Spital Limmattal, Schlieren, ZH, Switzerland.

出版信息

Front Biosci. 2003 Jan 1;8:d1-8. doi: 10.2741/916.

Abstract

Many eukaryotic and prokaryotic cells bind plasminogen in a specific and saturable manner. When plasminogen is bound to cell-surface proteins with C-terminal lysines via its lysine binding sites, its activation to plasmin is accelerated, and cell-bound plasmin is protected from inactivation by natural inhibitors. Plasmin mediates direct or indirect degradation of the extracellular matrix, and bound plasmin is used by cells to facilitate migration through extracellular matrices. Since cell migration and tissue remodelling are the underpinnings of many physiological and pathological responses, the modulation of plasminogen receptors may serve as a primary regulatory mechanism for control of many cellular responses. Specific examples of cell types on which plasminogen receptors undergo modulation include: fibroblasts, where modulation may contribute to cartilage and bone destruction in rheumatoid arthritis; leukemic cells, where enhanced plasminogen binding may contribute to the heightened fibrinolytic state in the patients; other tumor cells, where up-regulation may support invasion and metastasis; bacteria, where enhanced plasminogen binding may facilitate tissue destruction and invasion; platelets, where up-regulation of plasminogen binding may play a role in regulating clot lysis; and adipocytes, where the modulation of plasminogen receptor expression may regulate cell differentiation and fat accumulation. Two pathways for modulation of plasminogen receptors have been characterized: A protease-dependent pathway can either up-regulate or down-regulate plasminogen binding to cells by changing the availability of plasminogen-binding proteins with C-terminal lysines. New receptors may be generated by trypsin-like proteases, including plasmin, which create new C-terminal lysines; other enzymes may expose existing membrane proteins by altering the cell surface; or receptor function may be lost by removal of C-terminal lysines. The basic carboxypeptidases of blood carboxypeptidase N and plasma carboxypeptidase B (TAFI) mediate such down-regulation. A non-protease dependent pathway for modulation of plasminogen receptors may be initiated by growth factors, chemokines or cytokines that alter the cell membrane and/or cytoskeleton architectures to expose plasminogen binding sites. Many examples of the modulation of plasminogen receptors have been demonstrated in vitro, and the development of knock-out mice may soon lead to incisive evaluations of the significance of the regulation of plasminogen receptors in vivo.

摘要

许多真核细胞和原核细胞以特异性和可饱和的方式结合纤溶酶原。当纤溶酶原通过其赖氨酸结合位点与具有C末端赖氨酸的细胞表面蛋白结合时,其向纤溶酶的激活加速,并且细胞结合的纤溶酶受到天然抑制剂失活的保护。纤溶酶介导细胞外基质的直接或间接降解,细胞利用结合的纤溶酶促进通过细胞外基质的迁移。由于细胞迁移和组织重塑是许多生理和病理反应的基础,纤溶酶原受体的调节可能作为控制许多细胞反应的主要调节机制。纤溶酶原受体发生调节的细胞类型的具体例子包括:成纤维细胞,其调节可能导致类风湿性关节炎中软骨和骨的破坏;白血病细胞,其中增强的纤溶酶原结合可能导致患者纤溶状态增强;其他肿瘤细胞,其中上调可能支持侵袭和转移;细菌,其中增强的纤溶酶原结合可能促进组织破坏和侵袭;血小板,其中纤溶酶原结合的上调可能在调节凝块溶解中起作用;以及脂肪细胞,其中纤溶酶原受体表达的调节可能调节细胞分化和脂肪积累。已经鉴定出两种调节纤溶酶原受体的途径:蛋白酶依赖性途径可以通过改变具有C末端赖氨酸的纤溶酶原结合蛋白的可用性来上调或下调纤溶酶原与细胞的结合。新的受体可能由胰蛋白酶样蛋白酶产生,包括纤溶酶,其产生新的C末端赖氨酸;其他酶可能通过改变细胞表面来暴露现有的膜蛋白;或者受体功能可能因C末端赖氨酸的去除而丧失。血液羧肽酶N和血浆羧肽酶B(TAFI)的碱性羧肽酶介导这种下调。纤溶酶原受体调节的非蛋白酶依赖性途径可能由改变细胞膜和/或细胞骨架结构以暴露纤溶酶原结合位点的生长因子、趋化因子或细胞因子引发。纤溶酶原受体调节的许多例子已在体外得到证实,基因敲除小鼠的开发可能很快会对体内纤溶酶原受体调节的重要性进行深入评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验