Demchenko Ivan T, Oury Tim D, Crapo James D, Piantadosi Claude A
Duke University Medical Center, Durham NC 27710, USA.
Circ Res. 2002 Nov 29;91(11):1031-7. doi: 10.1161/01.res.0000043500.03647.81.
The mechanism of oxygen-induced cerebral vasoconstriction has been sought for more than a century. Using genetically altered mice to enhance or disrupt extracellular superoxide dismutase (EC-SOD, SOD3), we tested the hypothesis that this enzyme plays a critical role in the physiological response to oxygen in the brain by regulating nitric oxide (NO*) availability. Cerebral blood flow responses in these genetically altered mice to changes in PO2 demonstrate that SOD3 regulates equilibrium between superoxide (O2-) and NO, thereby controlling vascular tone and reactivity in the brain. That SOD3 opposes inactivation of NO* is shown by absence of vasoconstriction in response to PO2 in the hyperbaric range in SOD3+/+ mice, whereas NO-dependent relaxation is attenuated in SOD3-/- mutants. Thus, EC-SOD promotes NO* vasodilation by scavenging O2- while hyperoxia opposes NO and promotes constriction by enhancing endogenous O2- generation and decreasing basal vasodilator effects of NO.
一个多世纪以来,人们一直在探寻氧诱导脑血管收缩的机制。我们通过使用基因改造小鼠来增强或破坏细胞外超氧化物歧化酶(EC-SOD,SOD3),检验了这样一个假说:该酶通过调节一氧化氮(NO*)的可用性,在大脑对氧的生理反应中起关键作用。这些基因改造小鼠的脑血流对PO2变化的反应表明,SOD3调节超氧阴离子(O2-)和NO之间的平衡,从而控制脑血管张力和反应性。SOD3+/+小鼠在高压范围内对PO2无血管收缩反应,表明SOD3可对抗NO的失活,而在SOD3-/-突变体中,NO依赖性舒张减弱。因此,EC-SOD通过清除O2-促进NO介导的血管舒张,而高氧则对抗NO,通过增强内源性O2-生成和降低NO的基础血管舒张作用来促进血管收缩。